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Network Coding for Network Security 

Objective 

Use network coding to enable greater 
robustness and security 
• Reduce vulnerability eavesdroppers in networks 
• Provide reliability to Byzantine nodes in changing 
conditions 
• Provide constructive means of creating schemes that 
are as efficient as traditional point-to-point coding 
schemes 

3m*b*c*ts»tt 
a«2b»c*dt4g 
»4.0»C*3d*Sh 

Number of symbols that an intermediate node 
has to guess in order to decode one of the symbols 

Scientific/Technical Approach 
• Use the algebraic linear mixing of data to allow 
intrinsic keys from other data by considering the 
diagonalizability of matrices 
• Since robustness using network coding depends on 
having sufficient degrees of freedom to counteract 
attackers over the entire network, we develop means 
of tracking topology in changing P2P networks 
•Use network coding for constructing codes that 
match Singleton bound even with unknown attackers 

Accomplishments 
• New algorithms that use network coding for: 

• data hiding without the use of a key - 
ensuring sufficient degrees of freedom to 
decode over at the receiver in variable settings 
• creating efficient coding schemes for 
Byzantine attacks 
• providing quantification of the benefits of 
network coding 

Challenges 
•Integrating protection, degree of freedom design 
and coding . 



Key Accomplishments 

Technical breakthroughs: 

— Demonstrated the use of network coding to provide intrinsic cryptographic protection for 
wiretapped networks 

— Provided new means of using network coding for networks under attack: 

• For distributed network coded storage networks (peer-to-peer), a method for tracking the 
evolving topology of a peer-to-peer network so as to ensure sufficient coded diversity 
against attackers 

• For general networks, a robust coding approach that matches the Singleton bound even 
under attack scenarios for unknown attack locations as long as a level of diversity is 
ensured 

• We show that random network coding provides better reliability than random dispersive 
routing if there is enough capacity in the network 

The support of AFOSR in this context is crucial: 

— Only program to our knowledge that considers security of network coding in wireline systems, 
including P2P 

— Deployment of network coded P2P systems is taking place commercially (Microsoft) and holds 
great promise for military applications, 

— Collaboration with industry (HP) for technology transfer and synergies with DARPA IAMANET 
program (which is focused entirely on MANETs but can leverage some aspects of this 
program), collaborations with general theoretical underpinnings for network coding through NSF 
program and European program 



Content distribution using network coding 
alxPl+a2xP2+a,xP3 

Peer I 

PeerD 

Peer C 

Network coding operates by allowing mixing of data 

What are the security consequences of such mixtures? 

Two aspects: 

— Wiretapping aspects 

— Byzantine or pollution attacks - detection and correction A malicious user 
sends packets with valid linear combination in header, but garbage payload 



Wiretapping aspects 

The mixture of two messages, appropriately compressed, makes one message a one-time 
pad to another [CY02] 
If we want such mixtures, one can derive limits on network capacity [FMSS04] 
In general 

— Difficult to know the maximum number of links that can be tapped by adversary 
— Such secure coding schemes are sometimes impossible 

Main scheme: 

— Use other messages for "encryption" 

— If no other messages are sent: identical to dispersive routing [JM04, LLF04] 

— If other messages are sent: extra security from network coding 

Security can be added via network coding with lower cost than dispersive routing [TM06] 

Define level of security provided by random linear network coding is measured by the 
number of symbols that an intermediate node has to guess in order to decode one of the 
transmitted symbols [LMB07], [LVMB08] 



Random linear coding - a free cypher? 
Overview: 

Random linear coding (RLC) in effect provides a one-time 
use pad use of data in combination 

Level of security provided by RLC: 

— Number of symbols that an intermediate node v has to 
guess in order to decode one of the transmitted 
symbols 

— Partial transfer matrix 

We consider these results under different topologies 

Model, definitions, approach and results; 

Two cases w/ relevant information: 

1. Partial transfer matrix has full rank 

2. Partial transfer matrix has diagonizable parts 

Linear combination of independent and uniformly distributed 
values in F 

Product - Obtain a zero:2g zeros, (aE: F ) x 0 

q  entries of the multiplicative table 

•     Probability p of having s> K -1 zeros in one or more lines 

X 0 1 2 

0 0 0 0 

1 0 1 2 

2 0 2 1 

P(Xtt-0)*- 

P(XliH-0)q^-0 

p = K-\ 

K-\ 



Random linear coding - a free cypher? 
Analysing the different possibilities of 
combinations for the lines that already 
have (K-l) zeros and the ones that can 
be obtained by Gaussian elimination 

recoverable number of symbols 

(57(v) degrees of freedom 

If 

\<öl(v)<K 

L - I   lines with 

K-\ zeros 

L = <5,(v)-/ 

Lines to perform 

Gaussian elimination 

ä,(v) = li=>|X-l,   P(X = \) = p 



Byzantine and pollution attacks 

Robustness against faulty/malicious components with arbitrary 
behavior, e.g. 

— dropping packets 

— misdirecting packets 

— sending spurious information 

Abstraction as Byzantine generals problem [LSP82] 

Byzantine robustness in networking [P88,MR97,KMM98,CL99] 



Problem setup 

Random linear network coding using coding vectors. 

A batch of r packets is multicast from a source node s to a set of sink nodes. 

A packet that is not a linear combination of its input packets is called 
adversarial. 

z0-the maximum number of adversarial packets 

m - the minimum source-sink cut capacity 
p- proportion of redundant symbols in each packet 

An omniscient adversary can observe transmission on the entire network 

Main results: 

— If the adversary is omniscient, the information rate of the code approaches 
m-2z0 asymptotically as the packet size increases. 

— If the adversary is NOT omniscient, and the source and the sinks share a 
secret channel not observed by the adversary, a rate of m-z0 is 
asymptotically achievable. 

— Will give details for the omniscient adversary case. 



Byzantine and pollution attacks - 
correction at decoding time 

• Distributed randomized network coding can be extended to detect Byzantine 
behavior 

— Small computational and communication overhead 

— small number of hash bits included with each packet, calculated as simple 
polynomial function of data 

Require only that a Byzantine attacker does not design and supply modified 
packets with complete knowledge of other nodes' packets 

• Main scheme: 

— Use a polynomial hash 

— An attacker without full knowledge of the traffic will have low probability of 
being able to match the hash 

— The hash can be used to detect an attack [HLKMEK04] 

• One can further use such a hash to decode 

10 



Omniscient adversary case 

Input matrix, X, whose /th row, x,, corresponds to the /th input packet. 
— The first n-pn-r entries of x, are independent exogenous data symbols. 

— The next pn are redundant symbols. 

— The last r symbols form the coding vector. 

An adversarial packet can be viewed as an additional source packet, and Z is the 
matrix whose /th row is the /th adversarial packet. 

The received packets at a terminal node can be represented by V, given by 

Y=GX+KZ 
where G and K are the linear mappings from the source and the adversarial packets 
respectively to the sink. 

Let G be the last r columns of Y. 

The sink knows G' but not G. 

11 



Omniscient adversary case 

Lemma 1: 

With probability at least 1-77/(7, the matrix G' has full column rank, where t] is 
the number of links in the network, and q is the size of the finite field. 

Proposition 1: 
With probability greater than ^-qne, the input matrix Xcan 
be recovered, and the decoding algorithm has 
complexity 0(n3m3). 

12 



Byzantine correction 
Block-length n over finite field F( Di=TJ1).1+Ti(2).r+...+Tj(n(1- E)).r«<i-* 
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Use accepted T> to decode [Jaggi05], [JLHE05], [JKLHDKM07] 
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Network error correcting codes for adversarial 
errors in multiple source networks 

Overview: 

• Network error correcting codes allow reliable transmission over a network that is 
subject to adversarial errors [KK07, 08] 

• Existing work gives bounds and explicit code constructions for single-source 
multicast networks 

• We generalize these results to multiple source multicast networks 

Model and definitions: 
• We consider a directed graph G with a set L/of source nodes, and an adversary 

that can introduce arbitrary errors on up to z links 

• The region of reliable multicast transmission rates /f,from the ithsource to the sinks 
is given in terms of the minimum cut capacities ms between sources in subsets S 
of üand each sink 

Approach and results: 

• The reliable communication rates under z adversarial errors satisfy 

- Singleton bound:Y k, *ms -2z,VS c u 

- Hamming bound:V A, s /w,-logv^o(;,v)^-l)y,vsct; 



Network error correcting codes - keeping 
enough degrees of freedom around 

Overview: _ 

• Determining the level of diversity against pollution is 
crucial in ensuring the operation of coding against 
attackers [LBK08] 

Model, definitions and approach: 
• In order to be able to model accurately the topology of a^; 

peer-to-peer distributed network with network coding we 
introduce the following: 

— Evolving overlay network: Scale-free random grap' 

— Three types of nodes: data source, data collector, 
data keeper 

— A tracker keeps a record of all nodes that store 
packets 

— Each keeper connects to a positive number of 
nodes in order to create diversity in the linear 
independence of packets in the network 

V2.«3,v 

O 

C 

M 

;N 

Information contact graph evolving 

through time. 
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Verification for content distribution 
without decoding 

We may want is a means of detecting that a single packet is polluted without decoding 

Need a homomorphic signature scheme that allows nodes to verify any linear 
combination of pieces without contacting the original sender or decoding packets 

Can use homomorphic hash functions [ADMK05], [GR06] 

Can use Secure Random Checksum (SRC) which requires less computation than the 
homomorphic hash function, but requires a secure channel to all the nodes [KFM06] 

A signature scheme without a secure channel for transmitting hash values and 
associated digital signatures of received and transmitted blocks 

— Weil pairing on elliptic curves provides authentication of the data in addition to 
pollution [CJL06] 

— Use a scheme that relies on the network coding scheme intrinsically [ZKMH07] 

We take a novel approach that uses a more algebraic angle [ZKMH07], [HHKMZ07] 

It can be shown that it is as hard as the (/?, m, m+n) Diffie-Hellman problem 

Overheads 

— Part of the public key has to be re-generated for each file 

— Signature vector 

If the file sizes are lame, after the initial setup, each additional file distributed only incurs 
a negligible amount of overhead using our signature scheme 

Our signature scheme has to be applied on the original file, not on hashes 



Conclusions 

•   This program has provided us the ability to develop means of: 

— Establishing new means of data protection using network 
coding 

— Constructing families of codes that are near-optimal 
theoretically to recover from Byzantine attacks without 
locating them 

— Creating a means for verifying validity of data without 
decoding or using a trusted authority 

— Creating a means of tracking reliability of network under 
network coding 

17 



Networks with random erasures and adversarial 
Overview: errors 

Network codes offer useful error and erasure correction 
capabilities, but can also suffer from error propagation 

The extent and manner in which network coding should be applied 
is shown to depend on the network topology and the probability 
distribution of erasures and errors 

Model: 
Packet transmissions in the network are randomly subject to 
erasures and adversarial or arbitrary errors, with probabilities p and 
q respectively 

We compare different coding and routing strategies for transmitting 
over multiple source-sink paths 

Approach and results: 

• We show that when the source performs random coding ,the 
problem can be reduced to optimization of the strategy used on 
each path 

• We define a quantity called information rank loss which can be 
used as a proxy for probability of successful decoding in the 
optimization problem (minimize information rank loss) 

• We find that random coding becomes more beneficial relative to 
routing as the redundancy (minimum cut capacity C- source 
information rate R) increases, and as q decreases relative to p (as 
shown in the graphs for 2 equal paths with p=0.1, C=20) 

• We can also optimize the trade-off between coding across paths 
and coding among packets transmitted on a path 
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Network Coding for Network Security 

Objective 

Use network coding to enable greater 
Robustness and security 
• Use network coding for detection and correction 
of Byzantine attackers 

• Provide network-coding based verification 
systems without the need for a trusted authority 
• Use network coding for providing free cyphers 
in the network 

Pl+a, 

PcerD 

PeerC 

Verification can occur without trusted authority 

Scientific/Technical Approach 
• Use the algebraic linear mixing of data to detect 
Byzantine attackers through the use of polynomial 
hashes 
• Extend MDS-style codes in conjunction with 
hash-based majority voting scheme 
• Generalize coding bounds by use of q-Johnson 
scheme, akin to the Grassmannian manifold approach 
in continuous cases 
• Use discrete-log approach for verification in a manner 
that is robust to linear operations 
• Use data mixture as one-time pad in the network 

Accomplishments 
• New algorithms for detection and correction 
of attacks in the context of users with shared secrets, 
omniscient adversaries and limited adversaries 

• New theoretical basis for the study of errors arp 
erasure based on q-Johnson scheme 
• A new algorithm for secure network-coding 
based peer-to-peer file exchanges based on nek 
signature schemes, developed with H-P Labora|t 

Challenges 
•Applying our verification approach on hash function^ 
of the data. 



Impact and outreach 

The support of AFOSR is important since this topic is directly rooted 
in adversarial settings. As such, namely as an investigation of 
information dissemination robustness using network coding in a 
hostile setting, this topic is identified as natural research in 
military contexts 
We believe that demonstrating the robustness of network 
coding when it is combined with error correction in a natural way, 
will be an enabling factor for the application of network coding in 
highly volatile, hostile scenarios. Moreover, the techniques are 
applicable also in non-adversary network contexts, which promises 
to have a high impact factor. 
Collaboration with Dina Katabi, Sachin Katti (MIT CSAIL), Sid Jaggi 
(Chinese University of Hong Kong), Michael Lanberg (The Open 
University of Israel), Michelle Effros (Caltech), Ton Kalker (HP Labs) 
- Commercial impact and synergistic collaboration with DARPA 
ITMANET and CBMANET projects for transitioning ideas to 
MANETs 



Byzantine and pollution attacks 

Robustness against faulty/malicious 
components with arbitrary behavior, e.g. 
□ dropping packets 
□ misdirecting packets 
□ sending spurious information 

Abstraction as Byzantine generals problem 
[LSP82] 
Byzantine robustness in networking 
[P88,MR97,KMM98,CL99] 



Byzantine and pollution attacks 

Distributed randomized network coding can be extended to 
detect Byzantine behavior 
□ Small computational and communication overhead 
□ Small number of hash bits included with each packet, calculated 

as simple polynomial function of data 
Require only that a Byzantine attacker does not design and 
supply modified packets with complete knowledge of other 
nodes' packets 
Main scheme: 
□ Use a polynomial hash 
□ An attacker without full knowledge of the traffic will have low 

probability of being able to match the hash 
□ The hash can be used to detect an attack [HLKMEK04] 
One can further use such a hash to decode 



Byzantine correction 
Block-length n over finite field F 

Ltl 
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NEHZI 
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matrix 

SymboT ~^y^ 
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Dj=Ti(1)'.1+Tj(2)'.r+...+Tj(n(1-£))'.rl(1-£)? If so, accept Tjf else reject T, 

Use accepted Ts to decode [Jaggi05], [JLHE05], [JKLHDKM07] 



Network coding and network error 
correction 

Random network coding is susceptible to modifications of packets (adversary, 
jamming, non-hostile, packet erasures) 
Error correction in combination with network coding was considered by Yeung et al., 
and Zhang - here the network topology plays a central role 
Work in the context of Byzantine modifications in arbitrary networks: Ho et al. and 
Jaggi et al. 
We consider a network as a modeled by a random linear operator reflecting the 
Operation of random network coding on a network of unknown topology 

Operator Channel: Input is a subspace V of ambient n-dimensional space W, 
H is a random linear operator mapping V to a k-dimensional 
subspace of V; E is an error space of dimension t(E) 
Output is a subspace U of W 

 u = nk{v) E 

This formulation is very similar to non-coherent detection in the MIMO case: Zheng and Tse 



Network coding and network error 
correction 

Just as in the MIMO case: Constructing codes is equivalent to 
packing subspaces of dimension An in ambient space of dimension n. 
The metric for defining distance between two spaces A,B is 

Input: arbitrary basis vector 
for a chosen space U 
of dimension L 

d(A, B) :== (iiniU    B) - diniU n B) 

Equivalent to finding 
codes in the 
Grassmannian graph 
(q-Johnson scheme) 

NETWORK 

Injection of an error space E 
of dimension t 

Different modes of operation: 

n = <Jim(u )- dim(u DY)    is the number of "erasures" 

t = dimJY)- dimJY nu)     is the number of "errors" 

Output: basis vectors 
for a space Y 

We can correct any number of errors and erasures as long as  2(/5 + /)< D 



Content distribution of large files 

■ Distribution of large files to many users. 
■ Traditional solutions are based on a client-server 

model. 
■ Alternative technique - P2P swamping. 
■ Example - BitTorrent 

□ Divide file into many pieces. 
□ Client requests different pieces from server(s) or other 

users. 
□ Client becomes server to pieces downloaded. 
□ When a client has obtained all pieces, re-construct the 

whole file. 
□ Problem: hard to do optimal scheduling of pieces to nodes. 



Content distribution using network 
coding 
■ Use network coding to increase the efficiency of 

network coding in a P2P cooperative architecture 
[ADMK05], [DPR05], [GR05], [DGWR07] 

■ Instead of storing pieces on servers, store random 
linear combination of the pieces on servers 

■ Clients also generate random linear combination of 
the pieces they have received to send out 

■ When a client has accumulated enough degrees of 
freedom, decode to obtain the whole file 



Content distribution using network 
coding 

alxPl+a2xP2+a3xP3 

hi 

PeerE B2 

PeerD 

PeerC 
A malicious user can send packets with valid linear combination in the header, 
but garbage in the payload 
The pollution of packets spreads quickly 
Need a homomorphic signature scheme that allows nodes to verify any linear 
combination of pieces without contacting the original sender or decoding packets 



Verification for content distribution 

Can use homomorphic hash functions in content distribution 
systems to detect polluted packets [ADMK05], [GR06] 
Can use Secure Random Checksum (SRC) which requires less 
computation than the homomorphic hash function, but requires a 
secure channel to transmit the SRCs to all the nodes in the 
network [KFM06] 
A signature scheme without a secure channel for transmitting 
hash values and associated digital signatures of received and 
transmitted blocks; 
a  Weil pairing on elliptic curves provides authentication of the data 

in addition to pollution [CJL06] 
□  Use a scheme that relies on the network coding scheme 

intrinsically [ZKMH07] 



Problem formulation 

■ A source s wishes to send a large file to a group of 
peers, T 

■ View the data to be transmitted as vectors v,,...,\m in 
«-dimensional vector space F"p, where p is a prime. The 
source node augments these vectors to v,,..., \m given 
by 

where the first m elements are zero except the /-th one is 
l.and Vij^Fp 

■ Each packet received by a peer is a linear combination 
of all the pieces. 

w = V ß.\. 



Signature for network coding 

The vectors v,,...,v/M span a subspace Kof Fm+n. 
A received packet is a valid linear combination if and 
only if it belongs to V. 
Each node verifies the integrity of a received vector 
w by checking the membership of w in V. 
Our approach has the following ingredients: 
□ q\ a large prime such that/? is a divisor of q -1. 
□ g: a generator of the group G of order/? in F . 
□ Private key: AT   = {<x}._,   m4„ , a random set of elements 

in F ■ 
□ Public key: A'    ={h = ?"'}., 

  



Signature for network coding 

The scheme works as follows: 

- The source finds a vector u that is orthogonal to all 
vectors in V. 

»a The source computes vector x = (w, /ax,..., um+n I am+n) 
i The source signs x with some standard signature 

scheme and publishes it. 
f When a node receives a vector w and wants to verify 

that w is in V, it computes 
m + n 

o 
and verifies that d=1. 

XjWi 



Discussion 
It can be shown that it is as hard as the (p, m, m+n) Diffie-Hellman 
problem 
Thus, it is as hard as the Discrete Logarithm problem to find new 
vectors that also satisfy the verification criterion other than those 
that are in V [BF99] 
Overheads 
□ Part of the public key Kpu has to be re-generated for each file, 

otherwise a malicious node can use the information from the 
previous file 

□ Signature vector, x 
If the file sizes are large, after the initial setup, each additional file 
distributed only incurs a negligible amount of overhead using our 
signature scheme 
Our signature scheme has to be applied on the original file, not 
on hashes. 



Looking forward 

The free cypher of network coding can lead to new ways 
of managing security in the networks: 
□ Using partial knowledge of a file as a cypher 
□ Rate-based security in networks? 

Network coding for pollution detection and correction: 
□ How do we locate attackers? 
□ What is the effect of incorrect network management? 
□ Connection with network tomography using network coding 

[FM05, 06] 

Verification in network coding: 
□ Can we find further network coding specific schemes? 
□ Can we use schemes on hashes? 
□ What are the interactions with free cyphers in networks? 
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Resilient Network Coding in the Presence of 
Byzantine Adversaries 

Sidharth Jaggi, Member, IEEE, Michael Langberg, Sachin Kam. Tracey Ho, Member, IEEE, Dina Katabi. 
Muriel Medard, Fellow, IEEE, and Michelle 1 tiros. Senior Member, IEEE 

\h\irac(—Network coding substantial!} iiurvasis network 
throughput. But since il involves mixing of information inside 
the network, a single corrupted packet generated by a malicious 
node can end up contaminating all the information reaching a 
(hMination. presenting decoding. 

This paper introduces distributed polynomial-time rate-optimal 
network codes that work in the presence of Byzantine nodes. We 
present algorithms that target adversaries with different attacking 
capabilities. When the adursan can eavesdrop on all links and 
j;iin links, our first algorithm achieves a rate of (" - 2 '-< >, where 
I is the network capacity. In contrast, when the adursary has lim- 
ited eavesdropping capabilities, we provide algorithms that achieve 
the higher rate of 

Our algorithms attain the optimal rate given the strength of 
the adversary. The) are information-theoretical!) secure. They 
operate in a distributed manner, assume no knowledge of the 
topology, and can be designed and implemented in polynomial 
time. Furthermore, only the source and destination need to be 
modified: nonmalicious nodes inside the network are oMNtlMI • <> 
the presence of adversaries and implement a classical distributed 
network code. Finally, our algorithms work over wired and wire- 
less networks. 

Index Terms—It wan tine adversaries, distributed network 
error-correcting codes, eavesdroppers, information-theoretically 
optimal, list decoding, polynomial-time algorithms. 

I. INTRODUCTION 

NETWORK coding allows the routers to mix the infor- 
mation content in packets before forwarding them. This 

mixing has been theoretically proven to maximize network 
throughput [1], |23|, [21], (15]. It can be done in a distributed 
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manner with low complexity, and is robust to packet losses and 
network failures [ 10]. [25J. Furthermore, recent implementa- 
tions o\' network coding for wired and wireless environments 
demonstrate its practical benelits 11S|. |S). 

But what if the network contains malicious nodes'? A ma- 
licious node may pretend to forward packets from source to 
destination, while in reality it injects corrupted packets into 
the ■formation flow. Since network coding makes the routers 
mix packets' content, a single corrupted packet can end up 
corrupting all the information reaching a destination. Unless 
this problem is solved, network coding may perform much 
worse than pure forwarding in the presence of adversaries. 

The interplay of network coding and Byzantine adversaries 
has been examined by a few recent papers. Some detect the pres- 
ence of an adversary [ 12], others correct the errors he injects into 
the codes under specific conditions [°|. 114). |22). [31], and a 
teu bound the maximum achievable rate in such adverse envi- 
ronments [3], |29J. Bui attaining optimal rates using distributed 
and low-complexity codes uas an open problem. 

This paper designs distributed polynomial-time rate-optimal 
network codes that combat By/antine adversaries.1 We present 
three algorithms that target adversaries with different strengths. 
The adversary can inject to packets per unit time, but his lis- 
tening power varies. When the adversary is omniscient, i.e., he 
Observe« transmissions on the entire network, our codes achieve 
the i ate ol ( ' l\n. with high probability. When the adversary's 
knowledge is limited, either because he eavesdrops only on a 
subset of the links or the source and destination have a low-rate 
secret channel, our algorithms deli\er the higher rate of C — zo• 

The intuition underlying all of our algorithms is that the ag 
gregate packets from the adversarial nodes can be thought of as 
a second source. The information received at the destination is a 
linear transform of the source's and the adversary's information. 
Given enough linear combinations (enough coded packets), the 
destination can decode both sources. The question however is 
how does the destination distill out the source's information 
from the received mixture. To do so, the source's information 
has to satisfy certain constraints that the attacker's data cannot 
satisty This can be done by judiciously adding redundancy at 
the source. For example, the source may add parity checks on 
the source's original data. The receiver can use the syndrome of 
the received packets to determine the effect of the adversary's 
transmissions. The challenge addressed herein is to design the 
parity checks lor distributed network codes that achieve the op- 
timal rates 

'Independently and concurrently to our work. Koetter and Kschischang [19] 
present results of similar nature which are discussed in detail in Section II 
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Conceptually, our proof involves two steps. We first analyze 
standard network coding in the presence of Byzantine adver- 
saries (without adding additional redundancy at the source). In 
this setting, as expected, destination nodes cannot uniquely de- 
code the source\ data, however, we show that they can list de- 
code this data. Namely, receivers can identity a short list of po- 
tential messages that may have been transmitted. Once this is 
established, we analyze the effect of redundancy at the source 
in eaeh one of our scenarios I omniscient or limited adversaries). 

This paper makes several contributions. The algorithms pre- 
sented herein are distributed algorithms with polynomial-lime 
complexity in design and implementation, yet are rate-optimal. 
In tact, since pure forwarding is a special case ot network 
coding, being rate optimal, our algorithms also achieve a 
higher rate than any approach that does not use network coding. 
They assume no know ledge of the topology and work in both 
wired and wireless networks. Furthermore, implementing our 
algorithms invokes only I slight modification of the source and 
receiver while the internal nodes can continue to use standard 
network coding. 

ii. RELATED WORK 

Work on network coding started with a pioneering paper by 
Ahlsuede ft ai 11], which establishes the value oi coding in 
the routers and provides theoretical bounds on the capacity ot 
such networks. The combination of [231, [211. and [15] shows 
that, for multicast traffic, linear codes achieve the maximum 
capacity bounds, and both design and implementation can be 
done in polynomial time. Additionally. Ho et ai show that the 
ab< >\ e is true even when the routers perform random linear op- 
erations 11()|. Researchers have extended the above results to a 
variety of areas including wireless networks |25). |17|. [181. en- 
ergy [2S|. secrecy (2). content distribution [8]. and distributed 
storage 116], lor a couple of nice surveys on network coding 
see. e.g.. [30], [7]. 

A By/antine attacker is a malicious adversary hidden in a net- 
work, capable of eavesdropping and jamming communications 
Prior research has examined such attacks in the presence of net- 
work coding and without it. In the absence of network coding. 
Dolev et ai | 5 ] consider the problem of communicating over a 
known graph containing By/antine adversaries. They show that 
for A adversarial nixies, reliable communication is possible only 
if the graph has more than 2Jb + 1 vertex connectivity. Subrama- 
niam extends this result to unknown graphs [27]. Pelc et ai ad- 
dress the same problem in wireless networks by modeling mali- 
cious nodes as locally bounded Byzantine faults, i.e.. nodes can 
overhear and jam packets only in their neighborhood |26|. 

The interplay of network coding and By/antine adversaries 
was examined in [ 121. which detects the existence of an adver- 
sary but does not provide an error-correction scheme. The work 
of Cai and Yeung [2], [29], [3] generali/es standard bounds on 
error-correcting codes to networks, without providing any ex- 
plicit algorithms for achieving these bounds. Our work presents 
a constructive design to achieve those bounds. 

The problem of efhciently correcting errors in the presence of 
both network coding and Byzantine adversaries has been con- 
sidered by | tew prior proposals. Earlier work [22], |9) assumes 

a centralized trusted authority that provides hashes of the orig- 
inal packets to each node in the network. Charles et ai |4| ob- 
viates the need for a trusted entity under the assumption that 
the majority of packets received by each node is uncorrupted. 
Recently, Zhao et ai [32] have demonstrated error detection in 
the public key cryptographic setting. In contrast to the above 
schemes which are cryptographically secure, in a previous work 
114]. we consider an intormation-theoretically rate-optimal so- 
lution to Byzantine attacks tor wind networks, which however 
requires a centralized design. This paper builds on the above 

[ hemes to combine their desirable traits: it provides a dis- 
tributed solution that is information-theoretically rate optimal 
and can be designed and implemented in polynomial time. Fur- 
thermore, our algorithms have new features; they assume no 
knowledge of the topology, do not require any new function 
ality at internal nodes, and work for both wired and wireless 
networks. 

The work closest in spirit to our work is that of Koetter and 
Kschischang | 19]. who also studied the presence of By/antine 
adversaries in the distributed network coding setting. They 
concentrate on communicating against an omniscient adver- 
sary, and present a distributed scheme ot optimal rate C - 2zo- 
The proof techniques of [19] differ substantially from those 
presented in this work. In a nutshell, Koetter and Kschischang 
reduce the model of network coding to a certain point-to-point 
channel. They then construct generalizations of Reed-Solomon 
codes tor this channel, which enables the authors to construct 
deterministic network error-correcting codes as mentioned 
above. 

We would like to note that the abstraction used in [191 (al- 
though very elegant) comes at a price. It does not encapsulate 
the additional By/antine scenarios that arise naturally in prac- 
tice and are addressed in our current paper (i.e., adversaries of 
limited knowledge, discussed in Sections VI and VIII). More 
specifically, our protocol enables us to attain the higher rate of 
C - z0, albeit only under the (weaker) requirement of list de- 
coding. List decoding in the setting o\ network communication 
is a central ingredient in our proofs for limited adversaries. To 
the best of our current knowledge, the abstraction of [19] (al- 
though based on Reed-Solomon like codes) does not allow ef- 
ficient list decoding. 

in. MODEL AND DKRNITIONS 

We use a general model that encompasses both wired and 
wireless networks. To simplify notation, we consider only the 
problem of communicating from a single source to a single des- 
tination. But similarly to most network coding algorithms, our 
techniques generalize to multicast traffic. 

A.  Threat Model 

There is a source. Alice, who communicates over a wired or 
wireless network to a receiver Bob. There is also an attacker 
Calvin, hidden somewhere in the network. Calvin aims to pre- 
vent the transfer of information from Alice to Bob. or at least 
to minimize it. He can observe some or all of the transmissions. 
and can inject his own. When he injects his own data, he pre- 
tends they are part of the information How from Alice to Bob. 
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n - packet size  

M^i: B- Batch Size 

On - redundant symbols 

 ► 
I       I f      No. of packets 
I   *■* I *   ° *  Calvin iniects 

 n - packet size 

n - packet size  
Calvin injects 

C - Network Capacity 

Fig. I.   Alice, Bob. and Calvin's information mifckej 

Calvin is quite Strong. He is computationally unbounded. He 
knows the encoding and decoding schemes of Alice and Bob, 
and the network code implemented by the interior nodes. He 
also knows the exact network realization. 

B.  Network ami Code Model 

Network Model: The network is modeled as a hypergraph 
[24), Mach transmission carries a packet of data over a hyper- 
edge directed from the transmitting node to the sei of observer 
nodes. The hypergraph model captures both wired and wire- 
less networks. For wired networks, the hyperedge is a simple 
point-to-point link. For wireless networks, each such hyperedge 
is determined by instantaneous channel reali/aiions (packets 
may be lost due to fading or collisions) and connects the trans- 
mitter to all nodes that hear the transmission. The hypergraph is 
unknown to Alice and Bob prior to transmission. 

Source: Alice generates incompressible data that she wishes 
to deliver to Bob over the network. lb do so. Alice encodes her 
data as dictated by the encoding algorithm (described in subse- 
quent sections) She divides the encoded data into batches of b 
packets. For clarity, we focus on the encoding and decoding of 
one batch. 

A packet contains a sequence of // symbols from the finite 
field F(/. All arithmetic operations henceforth are done over 
symbols from F,,. (See the treatment in [201.) Out of the n sym- 
bols in Alice's packet. <sn symbols are redundancy added by the 
source 

Alice organizes the data in each batch into a matriv V as 
shown in Fig. I. We denote the {i.j)1h element in the matrix 
by x(i, j). The jth row in the matrix V is just the ,'th packet 
in ihe batch. Fig. 1 shows that similarly to standard network 
codes 110], some of the redundancy in the batch is devoted 
to sending the identity matrix /. Also, as in [ 10], Alice takes 
random linear combinations of the rows of X to generate her 
transmitted packets. As the packets traverse the network, the in- 
ternal nodes apply a linear transform to the batch. The identity 
matrix receives the same linear transform. The destination dis- 
covers the linear relation, denoted by the matrix T. between the 
packets it receives and those transmitted. This is done by in- 
specting how / was transformed 

Adversary: Let the matrix Z be the information Calvin 
injects into each batch. The si/e of this matrix is ZQ X n, where 
., i is the number of edges controlled by Calvin (alternatively, 
one may define zo to be the size of the min-cut from Calvin 

to the destination). In some of our adversarial models we limit 
the eavesdropping capabilities of Calvin. Namely, we limit the 
number of transmuted packets Cahin can observe. In such 
cases, this number will be denoted by zj. 

Receiver: Analogously to how Alice generates A', the re- 
ceiver Bob organizes the received packets into a matrix V. The 
ith received packet corresponds to the /'th row of) . Note that the 
number of received packets, and therefore the number of rows 
Of V. is a variable dependent on the network topology. Bob at- 
tempts to reconstruct Alice's information X. using the matrix 
of received packets V. 

As mentioned in the Introduction, conceptually. Bob recovers 
the information of Alice in two steps. First. Bob identifie 
o\' linear constraints which must be satistied by the transmuted 
information A of Alice. This set of constraints characterizes a 
linear subspace dlcw dimension in which X must lie. We refer 
to this low-dimensional subspace as a linear list decoding ol A . 
Once list decoding is accomplished, unique decoding follows 
by considering additional information Bob has on the matrix 
A" (such as its redundancy, or information transmitted by Alice 
over I low rate secret channel). 

Network Transform: The network performs a classical dis- 
tributed network code [ 10). Specifically, each packet transmitted 
by an internal node is a random linear combination of its in- 
coming packets. Thus, the effect of the network at the destina- 
tion can be summarized as follows: 

Y = TX + T'Z. 

This can be written as 

Y = [TIT'] 

(I) 

(2) 

where X is the batch of packets sent by Alice. Z refers to the 
packets Calvin injects into Alice's batch, and Y is the received 
batch. The matrix T refers to the linear transform from Alice to 
Bob. while V refers to the linear transform from Calvin to Bob. 
Notice that neither T nor V are know n to Bob. Rather, as shown 
in Fig. 1. Bob receives the matrix /. which cannot be directly 
used to recover A 

Notice that in our model the error imposed by the Byzantine 
adversary Calvin is assumed to be added to the original informa- 
tion transmitted on the network. One can also consider a model 
in which these errors overwrite the existing information trans- 
mitted by Alice. We stress that if Calvin is aware of transmis- 
sions on links, these two models are equivalent. Overwriting a 
message with Z is equivalent to adding — Xz + Z on the links 
controlled by Calvin, where Xz represents the original trans- 
missions on those links. 

Definitions: Table I lists notation needed for our main re- 
sults. We define the following concepts. 

• The network capacity, denoted by ('. is the time average 
of the maximum number of packets that can be delivered 
from Alice to Bob, assuming no adversarial interference, 
i.e., the max flow. It can be also expressed as the min-cut 
from source to destination. (For the corresponding multi- 
cast case, C is defined as the minimum of the min-cuts over 
all destinations ) 
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TABLE I 
I'ina USBD is MB PAPER 

Variable Definition 

c Network capacit> 
zo Number of packets Calvin can inject 
ZI Number of packets Calvin can hear 
b Number of packets in a batch" 
n length of each packet 
5 Alice's redundancy. 

"Throunlioiii tin» work b is defined as C - zo 

The error probability is the probability that Bobs recon- 
struction of Alice's information is inaccurate. 
The rate R is the number of information symbols that can 
be delivered on average, per time step, from Alice to Bob. 
Rate R is said to be achievable if for any gj > 0 and e2 > 0 
there exists a coding scheme of block length n with rate 
> R - 12 and error probability < €\. 

Theorem 3: If Zj < C - 2z(), the Limited Adversary algo- 
rithm achieve* an optimal rate of C to H ith code complexity 
0{nC3). 

I). Linear List Decoding Model 

A key building block in some of our proofs is a lincai list 
decoding algorithm. The model assumes the Omniscient Ad- 
versary of Section IV-B. We design a code that Bob can use to 
output a////rar list (of low dimension) that is guaranteed to con- 
tain Alice's message A\ The list is then refined to obtain the 
results stated in Theorems 1-3. In Section V we prove the fol- 
lowing. 

Theorem 4: The Linear List Decoding algorithm achieves a 
rate of C - :,, and outputs a list /, thai is guaranteed to contain 
A". The list L is a vector space of dimension 1,(1, -j- 20). The 
code-complexity is 0(nC:i). 

IV. SUMMARY OF RESULTS 

We have three main results. Each result corresponds to 
a distributed, rate-optimal, polynomial-time algorithm thai 
defeats an adversary of a particular type. The optimahtv of 
these rates has been proven by prior work |2|. [3|. [29], 114]. 
Our work, however, provides a construction of distributed 
COdes/algorithms that achieve optimal rates. To prove our 
results, we first study the scenario of high rate list decoding in 
the presence of Byzantine adversaries. In what follows, let \T\ 
denote the number of receivers, and \f\ denote the number of 
(hyper)-edges in the network. 

A. Shared Secret Model 

This model considers the transmission of information via net- 
work coding in a network where Calvin can observe all trans 
missions, and can inject z() corrupt packets. However, it is as- 
sumed that Alice can transmit to Bob a message (at asymptoti- 
cally negligible rate) which is unknown to Calvin over a separate 
tectet channel. In Section VI. we prove the following. 

Theorem I: The Shared Secret algorithm achieves an optimal 
rate of C - z0 with code-complexity 0{nC:i). 

B. Omniscient Adversary Model 

This model assumes an omniscient adversary, i.e.. one from 
whom nothing is hidden. As in the Shared Secret model, Calvin 
can observe all transmissions, and can inject z(, corrupt packets 
However, Alice and Bob have no shared secrets hidden from 
Calvin. In Section VII, we prove the following. 

Theorem 2: The Omniscient Adversary algorithm achieves 
an optimal rate of C - 2z() with code-complexity 0{{n('):s). 

C. Limited Adversary Model 

In this model, Calvin is limited in his eavesdropping power; 
he can observe at most zj transmitted packets. Exploiting this 
weakness of the adversary results in an algorithm that, like the 
Omniscient Adversary algorithm, operates without a shared so 
cret. In Section VIII, we prove the following. 

V.    I.IM AR   LlSI   DhCODlNG IN THE 

OMNISCIENT ADVERSARY MODEL 

Here we assume we face an omniscient adversary, i.e., Calvin 
can observe everything, and there are no shared secrets between 
Alice and Bob. We design a code that Bob can use in this see 
nario to output a linear list (of low dimension) that is guaranteed 
to contain Alice's message X. Our algorithm achieves a rate of 
R = ( The corrupted information Y Bob receives en- 
ables him to deduce a system of linear equations that A satis- 
fies. This system of equations ensures that Ar lies in a low-di- 
mensional vector space. We now present our algorithm in detail. 
Throughout this and upcoming sections. h is fixed as C - zo. 

A. Alii t  v Encoder 

Alice's encoder is quite straightforward. She simply arranges 
the source symbols into the b x r/ matrix A', appended with a 
//-dimensional identity matrix. She then implements the clas- 
sical random network encoder described in Section III-B to gen- 
erate her transmitted packets. 

B. Bob .v Decoder 

Bob selects b + ZQ linearly independent columns of V. and 
denotes the corresponding matrix V \ Here we assume, without 
loss ot generality (w.l.o.g.). that the column rank of)' is indeed 
b + z(). The column rank cannot be larger than // + z() by (2). 
If the column rank happens to be r < b + z0. Bob selects i 
independent rows of Y and continues m a procedure analogous 
to that described below. We also assume that Y* contains the 
last b columns of Y (corresponding to Alice's 6-dimensional 
identity matrix). This is justified due to (2) and the assumption 
(discussed below) that the intersection n\ the column spans of 
T and V is trivial, i.e., [T\V] is regular (with high probability 
over the random choices of internal nodes in the network i The 
remaining z() columns of Y* are chosen arbitrarily so that Y* 
is invertible. The columns of X and Z corresponding to those 
in Y* are denoted X" and Z\ respectively. By (2), 

Y, = jT)T/j X» 
Z" 
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Also, since Y* acts as a basis tor the columns of V. we can 
write Y = P/'tor some matrix F. Bob can compute F as 

\-i (Ya)     Y. Therefore. Y can also be written as 

Y = \T\r\ .3) 

Comparing (2) and (3). and again using the assumption that 
\T\T'} is invertible (with high probability) gives US 

X=X*F 

Z=Z'F. 

(4) 

(5) 

In particular. (4) gives a linear relationship on A that can 
be leveraged into a list-decoding scheme for Bob (the corre- 
sponding linear relationship from (5) is not very useful). The 
number of variables in Xs is b{b + z()). Therefore, the entries 
of the matrix A'" span a vector space of dimension b{b + zu) 
overF^. Bob's list is the corresponding b(b + 20)-dimensional 
vector space L spanned bv XI 

The only source of error in our argument arises if the intersec- 
tion of the column-spans of T and T is nontrivial, i.e., if [T\V] 
is singular. But as shown in 111], as long as l>+ ZQ < i'. this is at 
most |T||<f \q ' for any fixed network. Since Calvin can choose 
his locations in at most (j*j) ways, the total probability of error 
is at most ('/ 'JITH^-1. The computational cost oi design, en- 
coding and decoding is dominated by the cost of computing F 
and thereby a representation of L. This takes 0(nC3) steps. 

Note: In the Linear List Decoding scheme described above, 
Alice appends an identity matrix to her source symbols to ob- 
tain the matrix A . causing (an asymptotically negligible) loss 
in rate. This is also the standard protocol of (10). We note that 
our scheme works just as well even if Alice does not append 
such an identity matrix, and X consists solely of source sym- 
bols. However, the appended identity matrix is used in the model 
of Section VII. We now solve(4) under different assumptions < m 
Calvin's strength. 

VI. SHARKD SKCRET MODEL 

In the Shared Secret model Alice and Bob have use of a strong 
resource, namely, a secret channel over which Alice can transmit 
a small amount oi' information to Bob that is secret from Calvin. 
The size of this secret is asymptotically negligible in n. Note that 
since the internal nodes mix corrupted and uncorrupted packets. 
Alice cannot just sign her packets and have Bob check the signa- 
ture and throw away corrupted packets—in extreme cases. Bob 
may not receive any uncorrupted packets. 

Alice uses the secret channel to send a random hash of her 
data to Bob. Bob first uses the list-decoding scheme of Section V 
to obtain a low-dimensional vector space L containing A. He 
then uses Alice's hash to identif)   V from L. 

Let a be a parameter defined below. Let rj ra be n 
elements of Fq chosen at random by Alice (and unknown to 
Calvin). Let D = [<f,j] bean;ixo matrix in which d,j = (r,-)\ 
Let XD = H. Alice sends to Bob a secret S comprising of the 
symbols rj >,. and the matrix //. The si/e of this secret is 
thus ,,(<> -f 1). which is asymptotically negligible in n. 

Claim 5: For any X' ^ X the probability (over rt.. 
that X'D = // is at most (*\ . 

Proof: We need to prove that (X — X')D£ 0 with high 
probability, where 0 is the zero matrix. As A' ^ X' there is 
at least one row of X which differs from A'. Assume w.l.o.g. 
that this is the first row, denoted here as the nonzero vector 
(T\ xu). The jth entry in the first row of | V - X')D is 
F(rj) = XÜ'=i r>ry As F(rj) is not ,,1c /ero polyÄOmill, the 
probability io\er r, j that F(tj) = 0 is at most -. This holds for 
all entries of the first row of (X - X')D. Thus, the probability 

thai the entire row is the zero vector is at most (-)  ■ □ 

Let (t sä b(b + 9Q) + 1. Let L be a list (containing X) of 
distinct matrices. Let the si/e oi L be q°~l. 

CoroUajy 6: The probability (over rx /,,) that tlu 
ists A E L such that X' a£ X but X'D = XD is at most 
n"/q. 

Proof: We use Claim 5, and the union bound on all ele- 
ments o\'L that differ from A". D 

Note: The secret channel is essential for the following reason. 
It the l) mbols /   /,, were not secret from Calvin, he could 
carefully select his corrupted packets so that Bob's list L would 
indeed contain an X' * X such that X'D = XD. 

Bob is able to decode the original information X of 
Alice. Namely. Corollary 6 establishes that the system 
\ /> = XHFD = H has a single solution. This solution 

can be found using standard Gaussian elimination. 
The gbove implies a scheme that achieves rate C — ZQ. The 

optimality of this rate is shown in prior work 114]. The prob- 
ability of error is at most nQ/q + |T||^|(^)/7. Here a = 
b(b + zn) + 1. The computational cost of design, encoding, and 
decoding is dominated by the cost of running the Linear List 
Decoding algorithm, which takes time 0{nC3). 

VII.  UNIQUE DECODING IN THE 

OMNISCIENT ADVERSARY MODEL 

We now consider unique decoding. Our algorithm achieves 
a rate of R'. = C - 2zo, which is lower than that possible in 
the list decoding scenario. Recent bounds [2\. [3J on network 
error-correcting codes show that in fact C-2z0 is the maximum 
achievable rate for networks with an omniseient adversary. 

To move from list decoding to unique decoding in the omni- 
scient model, we add redundancy to Alice's information as fol- 
lows. Alice writes her information X in the form of a length-/»; 
column vector X. The vector X is chosen to satisfy DX = 0. 
Here. D is a Sn K ''// matrix defined as the redunihirux matrix. 
The matrix P is obtained by choosing each element as an in- 
dependent and uniformly random symbol from the finite field 
F,r and tn > n{z(, + t) for arbitrarily small e. This choice of 
parameters implies that the number oi parity checks DX = 0 
is greater than the number of symbols in the zu packets that 
Calvin injects into the network. We show that this allows Bob 
to uniquely decode, implying a rate of C-2zo- The redundancy 
matrix D is known to all parties—Alice, Bob. and Calvin —and 
hence does not constitute a shared secret. 

Alice encodes as in Section V. Bob's decoding is as follows. 
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Bob first runs the Linear List Decoding algorithm to obtain 
(4»and (5). We denote the matrix comprising of the first -.,, rows 
o\ /■' bv / . and the matrix composing of the last b rows of / h\ 
F). By the constraints specified in Section V, the last b columns 
of X9 form an identity matrix. Thus. (4) transforms into 

X = X;Fl + F2 (6) 

where V. comprises of the first So columns o\' .Vs. 
Recall that X is a vector corresponding to the main \ V. Upon 

receiving V. Bob computes F and solves the system 

I    \;FX+F2 (7) 

\  s0, (8) 

Here, only I) and /■' are known to Bob. Our goal is now to show 
that with high probability over the entries of the matrix D. no 
matter winch matrix F was obtained by Bob, there is a unique 
solution to (7) and (8). The matrix F depends on the errors '/ 
Calvin injects.Cah in can choose these to depend on D. We take 
this into consideration below. 

The system of linear equations (7H8) can be written in ma- 
trix form as 

ii = [**> *«B 

where A comprises of the submatrices A[F\) and I), A{F\) 
is a f>n x /;;/ matrix whose entries depend on F\. and 8 is a 
length-n(h + b) vector. It holds that the system <7>-<X) has a 
unique solution if ami oulv if 1 has full column rank. However. 
Calvin has partial control over F. and his goal is to design his 
error Z so this will not be the case. 

In what follows, we show that Calvin cannot succeed. 
Namely, we show, with high probability over the entries o\ IK 
that no matter what the value of F is, the system (7>-{8) has 
a unique solution. Our proof has the following structure. We 
tirst show that tor a fixed F\. the matrix \ has full column rank 
with high probability over I). We then note that the number 
of possible different matrices /•', is at most <{'■ " (this follows 
from the size of / i Finally, applying the union bound we 
obtain our result. 

We start with some notation. Assume that X is arranged by 
stacking the columns of X one on top of the other, where the 
columns of XJ appear on the top of X. Also, we fix the (/. 1 ith 
entry of F\ to be ftJ. Then, the matrix 

-[ A(F, 
D 

has the following tonn: 

(1-./ -hxl •••            "/.„I/ 

-w -w •••    (l-/zo.*o)' 

0 

-/] -h,zn+\I _/-<>.zo + l-f 

-/..n -/2,J — Jzif.ni 

/ 

/; 

The matrix A is described by smaller dimensional matrices as 
entries. Namely, the identity matrices / appearing above have 
dimension D, the identity matrix I has dimension h(n - z0), 
and the /ero matrix 0 has dimension tob x b(n - z0). We now 
analyze the column rank o\   \ 

Clearly, the last b{n - to) columns of A are in- 
dependent. Thus, any set of dependent columns of .4 
must include at least one of the first bzo columns. Let 
V =  {n\ ">,z,,-<'i "fcfn-:<>)} be the set of columns 
of A (here the {•«.,■} vectors correspond to the leftmost bzo 
columns of .1). We break the {it,} and { r, | vectors into two 
parts. The components of the {?/,} and { r,} vectors in the top 
Im nms oi A are denoted, respectively, as {w[} and {tf{}. The 
components of the {n,} and {VJ) vectors in the bottom bn 
rows of A are denoted, respectively, as {?/'/} and jr'}. The 
matrix A is rank-deficient if and only if there exist {o,} and 

{iij}. not all zero, such that Y,, n>u> + Ylj >jirj = °- Note 

that there is a one to-one correspondence between the values 
{o,} and the values {;^} in the above equality. Namely, for 
each setting of {o,}. there is a unique setting of {/^} for v\ hich 

Z,°'"! + SiAvj = °- Further, for every setting of the 
values [on | (and a corresponding setting for {.i, \). the prob- 

ability over D that £t o,»^ + Z, >V'j = ° is al mosl <!'*"■ 
This implies that the probability 2l,(v,u, + JZ7 0/*j = 0 is 
asymptotically negligible. Then, an additional use of the union 
bound 00 all 7'^" rx^ssible values of {a,} suffices to obtain our 
proof. 

All in all. Boh fails to uniquely decode with probability 
f/:,"V/'""<rNl <lr»e first term corresponds to the union bound 
ovet the values of / 1 = [/,7], the second term corresponds to 
the union bound over the values of {o,}. and the third term cor- 
responds to the failure probability). Setting 6 = ZQ + e suffices 
for our proof. The computational cost o\' design, encoding, and 
decoding is dominated by solving the system of (7H8), and 
thus equals 0{{nC)3). 

VIII. LIMITED ADVERSARY MODEL 

In this section, we combine the strengths of the Shared Se- 
cret and the Omniscient Adversary algorithms o\' Sections VI 
and VII, respectively. We then achieve the higher rate of C- zo 
without the need of a secret channel. The caveat is that Calvin is 
more limited—he can only eavesdrop on pan of the edges in the 
network. Specifically, the number of packets he can transmit. 
:,-. and the number he can eavesdrop on. ,-. satisfy the tech- 
nical constraint 

2z0 + zi <C. (9) 

We call such an adversary a Limited Adversary. 
The main idea underlying our Limited Adversary algorithm 

is simple. Alice uses the Omniscient Adversary algorithm to 
transmit I "short, scrambled" message to Bob at rate C - 2ZQ. 

By (9), the rate zj at which Calvin eavesdrops is strictly less than 
Alice's rate of transmission C - 2z0. Hence, Calvin cannot de- 
code Alice's message, but Bob can. This means Alice's scram- 
bled message to Bob contains a secret S that is unknown to 
Calvin. Once S has been shared from Alice to Bob. they can 
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use the Shared Secret algorithm 10 transmit the bulk of Alice's 
message to Bob at the higher rate C - zo- 

A. Alice's Encoder 

MKC'S encoder follows essentially the schema described in 
(be pre\ ICHJS paragraph. The information S she transmits to Bob 
\KI the Omniscient Adversary algorithm is padded with some 
random symbols. This is for two reasons, hrst. the randomness 
m the padded symbols ensures Strong information-theoretic se 
crecy of S. That is, we show in Claim 7 that Calvin's best es- 
timate of am /unction of S is no better than it he randomly 
guessed the \alue of the function. Second, since the Omniscient 
Adversary algorithm has a probability of error that deca\s e\ 
ponentially w ith the si/e o\ the input, it is not guaranteed to per- 
form well when only a small message is transmitted. 

Alice di\ ides her information X into two parts [\\ A'2]. She 
uses the information she wishes to transmit to Bob (at rate R = 
(C — ZQ)(1 - A n :\s \\\c input to the encoder of the Shared 
Secret algorithm. The output of this step is the l> x n{ 1 - A) 
submatrix X \. Here A is a parameter that enables Alice to trade 
between the probability of error and rate loss. 

The second submatrix A"2. which we call the tecrecy matrix. 
is analogous to the secret S used in the Secret Sharing algorithm 
described in Section VI. The size of X2 is b x vA. In tact 
an encoding Of die secret S Alice generates in the Shared Secret 
algorithm. The 7 = (b(h + z0) + \){b + 1) symbols corre- 
sponding to the parity symbols {vj} and the hash matrix // are 
written in the form of a length-^ column vector. This vector is 
appended with symbols chosen uniformly at random from Fu 

to result in the length-(C - z0 - ö)nA vector U . Alice multi- 

plies U by a random square matrix to generate the input U. This 
vector U functions as the input to the Omniscient Adversary al- 
gorithm Operated over a packet-si/e //A with a probability of 
decoding error that is exponentially small in nA. The output of 
ihis step iv   I 

The following claim ensures that S is indeed secret from 
Calvin. 

Claim 7: Let 7 = {b{b+z0) +1)(&+1)- The probability that 
Calvin guesses S correctly is at most </~\ i.e.. S is information 
theoretically secret from Calvin. 

The proof of Claim 7 follows from a direct extension of the 
secure eommumeation scheme of 161 to our scenario. 

The two components of V. i.e.. X\ and A'j. respectively, cor- 
respond to the information Alice wishes to transmit to Bob. and 
an implementation of the low -rate secret channel. The fraction 
of the packet si/e corresponding to A _> is "small." i.e.. A. Fi- 
nally, Alice implements the classical random encoder described 
in Section III-B. 

B. Bob's Decoder 

Bob arranges his received packets into the matrix 
Y = [Vj V'2]. The submatnees V, and V_> are, respectively, the 
network transforms of A', and 

Bob dec(xJes in two steps. Bob Hrst recovers S by decoding 
>2 as follows. He begins by using the Omniscient Adversary 

TABU  II 
COMPARISON OF OUR THREE AI.UJRIIIIMS 

Vlwrsan.il 
Strength 

Rate Complexity   1 

Shared 
Secret 

zo <C. 
zi = network 

C -zo 0{nCs) 

Omniscien zo < C/2, 
zi = network 

C - 2zo 0((m 

| Limited zi+2zo <C C-zo OinC9) 

decoder to obtain the vector Ü. He then obtains Ü from Ü, by 
inverting the mapping specified in Alice's encoder. He finally 

extracts from U the ~ symbols corresponding to S. 
Alice has now shared S with Bob. Bob uses S as the side in- 

formation used by the decoder o\ the Shared Secret algorithm 
tO decode Y\. This enables him to recover A'j, which contains 
Alice's information at rate R = C — ZQ. The probability of 
error is dominated by the sums of the probabilities of error in 
Theorems I and 2. with the parameter n replaced by nA. The 
Limited Adversary algorithm is essentially a concatenation of 
the Shared Secret algorithm with the Omniscient Adversary al- 
gorithm, thus, the computational cost is dominated by the sum 
o\' the tun (with //A replacing n>. Choosing A appropriately 
(say nA = nxl:1), one may bound the complexity by G\ 

IX. CONCLUSION 

Random network codes are vulnerable to Byzantine adver- 
saries. This work makes them secure. We provide algorithms- 
which are information-theoretically secure and rate-optimal for 
different adversarial strengths (as shown in Table II). When 
the adversary is omniscient, we show how to achieve a rate of 
C — 2z(), where :■«, is the number of packets the adversary in- 
jects and ( ' is the network capacity. If the adversary cannot ob- 
serve everything, our algorithms achieve a higher rate, C — ZQ. 

Both rates are optimal. Further, our algorithms are practical; 
they are distributed, have polynomial-time complexity, and re- 
quire no changes at the internal nodes. 
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Byzantine Modification Detection in Multicast Networks 

With Random Network Coding 

v Ho. Member. I EEL.  Ben Leong. 
Ralf Koetter. Senior Member, II EE, Muriel Medard. bellow. Uli. 

Michelle EITros. Senior Member. IEEE, and 
David R. Karger, Associate Member. IEEE 

\h\trcut—An information-theoretic approach for detection Byzantine or 
adversarial modifications in networks employing random linear network 
coding is described. Kach exogenous source packet is augmented with a 
flexible number of hash symbols (bat are obtained as a polynomial func- 
tion of the data symbols. Ibis approach depends only on the adversary not 
knowing the random coding coefficients of all other packets received In the 
sink nodes when designing its adversarial packets. We show how the detec- 
tion probability varies with the overhead (ratio of hash to data symbols», 
coding field size, and the amount of information unknown to the adversary 
about the random code. 

Index Terms—B) /antine adversary, multicast, network coding, network 
error detection. 

I.   INTRODUCTION 

We consider the problem of information-theoretic detection of 
Byzantine, i.e., arbitrary, modifications of transmitted data in a net- 
work COdtag selling. 

Interest m network coding has grown following demonstrations of 
us \.iiions advantages: in network capacity [1|. robustness io noner- 
godtc network failures |2| and ergodic packet erasures [3], |4). and 
distributed network operation [5|. Multicast in overlay and ad hoc net- 
works is a promising application. Since packets are forwarded by end 
hosts io other end hosts, such networks are susceptible to B\/antine 
errors introduced by compromised end hosts 

We show that Byzantine modification detection capability can be 
added to a multicast scheme based on random linear block network 
coding [5|. (6j. with modest additional computational and communica- 
tion overhead, by incorporating a simple polynomial hash/check value 
in each packet. With this approach, a sink node can detect Byzantine 
modilications w uii high probability, as long as these modifications have 
not been designed with knowledge of the random coding combinations 
present in all other packets obtained at the sink: the only essential con- 
dition is the adversary's incomplete knowledge of the random network 
OOdc seen h\ the sink. No other assumptions arc made regarding the 
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topology of the network or the adversary's power to corrupt or inject 
packets. The adversary can know the entire message as well 
lions öl the random network code, and can have the same (or greater) 
transmission capacity compared to the source. This approach works 
even in the extreme case where every packet received by a sink has 
been corrupted by being coded together with an independent adver- 
sarial packet. This new adversarial model may be useful for applica- 
tion scenarios in which conventional assumptions of an upper bound 
on adversarial transmission capacity are less appropriate. For instance. 
in some peer-to-peer or wireless ad hoc settings we may not know how 
many adversaria] nodes might join the network, while it may be more 
likelv ihat there will be some transmissions that are not received by the 
adversarial nodes. In such cases, our approach can provide I useful al- 
ternative to existing methods. 

Our approach provides much flexibility in trading off between the 
detection probability, the proportion of redundancy, the coding field 
size, and the amount of information about the random code that is not 
ohsei 1 ed by the ad\ ersary. This approach can be used for low overhead 
monitoring during normal conditions w hen no adversary is know n to be 
present, in conjunction with more complex, higher overhead techniques 
which are activated upon detection of a Byzantine error, such as adding 
more redundancy for error correction. 

A preliminary version of this work with less general assumptions 
appeared in [7]. The security model is substantially generalized and 
strengthened m this work. 

A.  Background and Related Work 

The problem of secure network communications in the presence of 
Bv/antine ad\ersanes has been studied extensively, e.g.. [8J-[I 1 j. A 

survey of information-theoretic research in this area is given in 112). 
Two important issues are secrecy and authenticity;1 this work concerns 
the latter. Like one-time pads 113|. our approach relies on the genera- 
tion of random values unknown to the adversary, though the one-time 
pad provides secrecy and not autheniieiiv. 

In the network coding context, the problem of ensuring secrecy in 
the presence of a wiretap adversarv has been considered in 114J-| 16). 
The problem of correcting adversarial errors, which is complementary 
to our work, has been studied in [17|-|2I]. 

Adversarial models in existing works on information-theoretic 
authenticity techniques commonly assume some upper bound on the 
number of adversarial transmissions, which leads to a requirement 
on the amount of redundant network capacity. For the problem of 
adversarial error correction or resilient communication, the number 
of links/transmissions controlled by the adversary must necessarily 
be limited with respect to the number of links/transmissions in a 
minimum source-sink cut or the amount of redundancy transmitted 
by the source. For instance, in the resilient communication problem 
of Dolcv et al. |9|. the source and sink are connected by ?» wires, and 
their model requires that no more than (/» - 1 )/2 wires are disrupted 
by an adversary for resilient communication to be possible. In the 
network coding error correction problems of 1171, (20), [21), the rate 
of redundant information that the source needs to transmit is between 
one and two times the maximum rate of information that can be 
injected by the adversary, depending on the specific adversarial model. 

The above techniques can also be considered in the context of error 
detection. For example, in one phase of the secret sharing based algo- 
rithm in |0|. the source communicates a degree • polvnonnal f(x) € 
F7(x) by sending /(/) on the ah wire. If the adversarv controls at most 
n — T wires, any errors it introduces can be detected. In general, for 
approaches based on error-correcting codes such as in 117], the number 

1 These are independent attributes of a cryptographic system [13]. 
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of adversarial errors that can be detected is given by the difference be- 
tween the source-sink minimum cut and the source information rate. 

Such approaches hau- | threshold nature in that they do not otter 
uiaceful performance degradation when the number of adversarial 
transmissions exceeds the assumed upper bound. Their efficiency is 
also sensitive to overestimates of adversarial transmission capacity, 
which determines the amount of redundancy required. 

The adversarial model considered in this work is slightly different. 
Instead of assuming a limit on the number o\ adversarial errors, ou 
onl> assumption is on ihe incompleteness ot the adversary's knowl- 
edge of the random Code (the adversary can know the entire source 
message». In this ease, the overhead (proportion of redundant infor- 
mation transmitted by the source) is no longer a function of the esti- 
mated upper hound on the number of adversarial errors. Instead, n is 
I design parameter which, as we will show, can be flexibly traded off 
SSjamsl detection probability and coding field si/e. I nlike approaehes 
based on secret shatme and its v ariants. where the required proportional 
overhead is a function of the adversarial strength, in our approach, for 
any non/ero proportional overhead and any adversarial strength short 
o\ lull knowledge or control ol network transmissions, the detection 
probability can be made arbitrarily high by increasing the held size. 
The former has the advantage of deterministic guarantees, while our 
approach has the advantage of greater flexibility with additional per- 
tormance parameters that can be traded off against one another. 

The use of our error detection technique for low-overhead mon- 
itoring under normal conditions when no adversary is known to be 
present, m conjunction with l more complex technique activated upon 
detection Of eo adversary, has a parallel in works sueh as |22| and (23J. 
These works opimu/e for normal conditions by using less complex 
message authentication codes and signed digests. respectively, during 
normal operation, resorting to more complex recovery mechanisms 
only upon detection of a fault. 

symbols. The coefficient vector of the ith exogenous packet is the unit 
vector with a single non/ero entry in the ith position. The coefficient 
vectors are used for decoding at the sinks as explained below 

Each packet transmitted by the source node is an independent 
random linear combination of the r exogenous pffftfft and each 

packet transmitted by a nonsource node is an independent random 
linear combination ot packets received at that node. The ooeffi- 
cients of these linear combinations are chosen with the uniform 
distribution from the finite field F.;, and the same linear operation 
is applied to each symbol in a packet. For instance, if packet pi is 
formed as a random linear combination of packets / . and />_.. then 

wPi = -| itüP1 + -_• cttV; where -| t and -•_> i arc random scalar 
coding coefficients distributed uniformly over Fq. 

Let row vector m, € F!/"+'" represent the concatenation of the data 
and hash symbols for the ith exogenous packet, and let M be the ma- 
trix whose/throw ism,. A packet p is genuine if its data/hash symbols 
are consistent with its coefficient vector, i.e.. wP = [t,,M. t,,]. The ex- 
ogenous packets are genuine, and any packet formed as a linear COD* 
bination of genuine packets is also genuine. Adversarial packets, i.e.. 
packets transmuted by the adversary, may contain arbitrary coefficient 
vector and data/hash values. An adversarial packet /< can be represented 
in general by [tpM + vp,tp\, where v., is an arbitrary vector FJ**. If 
r. is non/ero. /> (and linear combinations of /< with genuine packets) 
are nongenuine. 

A set S of packets can be represented as a block matrix 
[7\s-A/ + V\s-|7\s] whose ith row is wPt where /;. is the ah packet 
of the set. A sink node / attempts to decode when it has collected a 
decodmg m consisting of r linearly independent packets (i.e., packets 
whose coetlicient vectors are linearly independent). For a decoding 
set P. the decoding process is equivalent to prcmultiplying the matrix 
[TnM + Vn\Tn\ with Tp1. This gives \M + T^VV\I], i.e.. the 
receiver decodes to M 4- Xf. where 

B.   Notation 

In this worL we denote matrices with bold uppercase letters and vec- 
tors with bold lowercase letters. All vectors are row vectors unless in 
dicated otherwise with a subscript T. We denote by [x. y] the concate- 
nation of two row vectors x and y. 

II. MODEL AND PROBLEM FORMULATION 

Consider random linear block network coding |5|. |b|. 124] of a block 
of r exogenous packets which originate at a source node and are mul- 
ticast to one or more sink nodes. We assume that the network coding 
subgraph is given by some separate mechanism, the details of which 
we are not concerned with.: An adversary observes some subset o\ 
packets transmitted in the network, and can corrupt, insert or delete one 
or more packets, or corrupt some subset of nodes. The only assump- 
tion we make is that the adversary's observations are limited such that 
when designing the adversarial packets, the adversary does not know 
the random coding combinations present in all other packets obtained 
at the sinks. This assumption is made precise using the notion of secret 
packets which we de line below. The source and sinks do not share any 
keys or common information. 

Each packet p in the network is represented by a row vector w}> of 
i + c+f symbols from a finite field F,;, where the first </ entries 
are data symbols, the next c are redundant hash symbols, and the last 
r form the packet's (global) coefficient vector tv. The field si/e is 2 
to the power of the symbol length in bits. The hash symbols in each 
exogenous packet are given by a function i / : F* — F^ of the data 

^Thc network coding subgraph uVtines the limes at which pickets H 
be transmitted on each network link (see, e.g.. [25]). 

M = TpYP (1) 

gives the disparity between the decoded packets and the original 
packets. If at least one packet in a decoding set is nongenuine, 
Vp # 0, and the decoded packets will differ from the original 
packets. A decoded packet is inconsistent if its data and hash values 
do not match, i.e., applying the function i.y to its data values docs not 
yield its hash values. If one or more decoded packets are inconsistent 
the sink declares an error. 

The coefficient vector of a packet transmitted by the source is uni- 
formly distributed over F£; it a padCBl whose coefficient vector has 
this uniform distribution is linearly combined with other packets, the 
resulting packet's coefficient vector has the same uniform distribution. 
We are concerned with the distribution of decoding outcomes condi- 
tioned on the adversary's information, i.e.. the adversary's observed 
and transmitted packets, and Us information on independencies/depen- 
dencies among packets. Note that in this setup, scaling a packet by some 
scalar element of F^ does not change the distribution of decoding out- 
comes 

For given M, the value of a packet p is specified by the row vector 
up = [tp, vv]. We call a packet j> secret if, conditioned on the value 
of vP and the adversary's information, its coefficient vector t,, is uni- 
formly distributed over F£\IF for some (possibly empty) subspace 
or affine space W C F^-3 Intuitively, secret packets include genuine 
packets whose coefficient vectors are unknown (in the above sense) 

'This definition of a secret packet is conservative as it docs not distinguish 
between packets wiih a nonuniform conditional distribution and packets that are 
fully known to the adversary. Taking this distinction into account would make 
the analysi» more complicated but would in some cases give a better bound on 
detection probability. 

Authorized licensed use limited to: MIT Libraries. Downloaded on February 26. 2009 at 21:51 from IEEE Xplore   Restrictions apply. 



2JMK) III!   I KANSACnONS ON INFORMATION THEORY. VOL 54. NO. 6. JUNE 2008 

to the adversary, as well as packets formed as linear combinations in- 
volving at least one secret packet. A set $ of secret packets is se- 

'uicpendem if each of the packets remains secret when the ad- 
versary is allowed to observe the other packets in the set; otherwise 
it is secrtw-di-piinlcni. Secrecy-dependencies arise from the network 
transmission topology, for instance, if a packet /> is formed as I linear 
combination of a set S ol secret packets (possibly with other nonsecrei 
packets), then 5 U (/»} is sectccy-dependent. 

To illustrate these definitions, suppose that the adversary- knows that 
a sink's decoding sot contains an adversarial packet /<■ as well as a 

packet /M formed as some linear combination /■•.«■, + '• "Vi of an 
achersaiial packet/'.- with a genuine packet pa, so the adversary knows 
I I | I and v,, ,= 0. Since adecoding set consists of packets 

with linearly independent coefficient vectors, the adversary knows that 
lp, and tv, are linearly independent. Suppose also that the adversary 
does not ohser\e the contents of any packets dependent on jn. Thus, the 
distribution oftJ>4. conditioned on thead\ersary \ information and any 
potential value k2vP2 for «;.t. is uniform over F^\{A-tPI : k 6 F?}. 
Also, packets pa and p< are secrecy-dependent. 

Consider a decoding set V containing one or more secret packets. 
Choosing an appropriate packet ordering, we can express [Tp|Vr] in 
the form 

X + B,      |   V,l 

[Tr\Vn] = CA + B > 

B,        I   V,j 

where for any given values ol B. € F;J'xr. V, 6 Fj 
1.2.3. and C G F;j3**'. the matnx A 6 F,',1 xr has a conditional 
distribution that is uniform over all values for which J/-. is nonsmgular. 
The lust 11 -f 09 row s correspond to secret packets, and the In si 0, rows 
correspond to I set pi secrecy -independent packets, s? = Q il there are 
no secrecy-dependencies among the secret packets in T>. 

This notion of secret packets provides the most general characteri- 
zation of the conditions under which the scheme succeeds. For a given 
network topology, a requirement on the number of secrecy-independent 
secret packets received at the sink can be translated into constraints on 
the subsets of links/packets the adversary can observe and/or modify. 
For instance, if information is sent on n parallel paths from I source to 
a sink node, then the number of secrecy-independent secret packets is 
the number of linearly independent packets received on paths that are 
not observed or controlled by the adversary. 

Note that we allow each packet of the decoding set to be corrupted 
wiih an independent adversarial packet, as long as at least one of the 
packets lias been formed as a linear combination with some secret 
packet. 

III. MAIN RESULTS 

In the following theorem, we consider decoding from a set of 
packets thai contains some nongenuine packet, which causes the 
decoded packets to differ from the original exogenous packets. The 
first pan of the theorem gives a lower bound on the number of equally 
likely potential values of the decoded packets—the adversary cannot 
narrow down the sei ol possible outcomes beyond this regardless of 
how it design* us adversarial packets The second pan provides, for a 
simple polynomial hash function, an upper bound on the proportion 
of potential decoding outcomes that can have consistent data and hash 
values, in terms of k = \'j\. the ceiling of the ratio of the number 
of data symbols to hash symbols. Larger values for A correspond 
to lower overheads hut lower probability of detecting an adversarial 
modification. This tradeoff is a design parameter for the network. 

Theorem I: Consider a decoding set V containing a sccrecy-inde- 
pendeni subset of« secret 1 possibly nongenume) packets, and suppose 
the decoding set contains at least one nongenuine packet. 

a) The adversary cannot determine which of asct ol at least (q- If1 

equally likely values of the decoded packets will be obtained at the 
sink In particular, there will be at least t] packets such that, for each 
of these, the adversary cannot determine which of a set of at least q - 1 
equally likely values will be obtained. 

b) Let v : F* — F7 be the function mapping O, »*), .r, € 
F,,, 10 

'•(TI rA ) = rt + •+-r' (3) 

where KB = [£]. Suppose the function | ■, mapping the data symbols 
J*I j-rf to the hash symbols ;/( //, in an exogenous packet is 
defined by 

y, =r(r,,_lU + I x,k).    V» = 1 C- 1 

ft ='  •*•.*)• 

Then the probability of not detecting an error is at most (i±i j 

Corollary 1: Lei the hash function 1 . be defined as in Theorem lb. 
Suppose I sink obtains more than r packets, including a secrecy-inde- 
pendent set of 1 secret packets, and ai leasi one nongenume packet. If 
the sink decode* using two or more decoding sets whose union includes 
all its received packets, then the probability of not delecting an error is 

at mosi(^)\ 

Example: With 2% overhead (* = 50), symbol length = 7 bits. 
« = *>. the detection probability is at least 98.9%; with 1% overhead 
(A- = 100). symbol length = 8 bits, i = 5, the detection probability 
is at least 99.0%. 

IV. DEVELOPMENT, PROOFS, AND ANCILLARY RESULTS 

\.   \ ulnerable Scenarios 

Beldie SOalyzni (fas scenario described in the pre\ unis sections, we 
lirsi point out when this approach fails to detect adversarial modifica- 
tions 

I ust. the sink needs some way of knowing if the source stops trans- 
muting, otherwise, the assumption of no shared secret information re- 
sults in the adversary being indistinguishable from the source. One pos- 
sibility is that the source cither transmits at a known rate or is inactive, 
and that the sink knows at what rates it should be receiving information 
on various subsets of incoming links when the source is active. If the 
adversary is unable to reproduce those information rates, e.g.. because 
it does not control the same part of the network as the source, then the 
sink knows when the source is inactive. 

Second, il the ad\ersary knows that the genuine packets received at 
a sink have coefficient vectors that lie in some «-dimensional subspace 
W C FJ, the following strateg> allows h to control the decoding out- 
come and so ensure that the decoded packets have consistent data and 
hash \alues. 

The adversary ensures that the sink receives u genuine packets with 
linearly independent coefficient vectors in H\ by supplying additional 
such packets if necessary. The adversary also supplies the sink with 
r - w nongenume packets whose coefficient vectors tt tr_„ are 
not in II . Let t,   „ | , t. he a set of basis vectors for U', and let 
T be the matnx whose Mh row is t,. Then the coefficient vectors of the 

v kets can be represented by the rows of the matrix 

[/ 0 ] 

L° K\ 

where A' is a nonsingular matrix in FJ * " . From (5). we have 

[/ 0" 
TM = 

"V] 

oj [o K 
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r/ 0 "VI 

[o 
rvi 

jrV OJ 

[o J 
= T-1 

Since the adversary knows T and controls V. it can determine M. 

H   Hwantinc Modification Detection 

We next consider the scenario described in Section II. where the ad- 
versary designs Us packets without knowing the contents ot one or mote 
secret packets the receiver will use lor decoding, and prove the results 

M lion III. 
We first estahlish two results that are used in the proof of The- 

orem 1. Consider the hash function defined in (3). We call a vector 
Ui a + i) € Fj"1"' consistent if.ri4, = \tr(x\ xk). 

Lemma 1: At most k 4- 1 out of the q vectors in a set 

{u+-,v:   - €F,} 

where u   a   (u, uk f, ) is a fixed vector in F* + l  and v   = 
(»i rn + i) is a fixed non/ero vector in Ff; 

+ I. can be consistent. 
Proof: Suppose some vector u + - v is consistent, i.e.. 

ut+, +y/k+i =<»" + v.)' + ■■■ + («* 4»TV*)*
+1

.    (4) 

Note that for any fixed value of u and any fixed nonzero value oft;. (4i 
is a polynomial equation m - ol degree equal to 1 4-1, where k 6 [1. k] 
is the highest index for which the corresponding iv is non/ero. i.e.. 

= 0 V A-' > k. By the fundamental theorem of algebra, 
ihis equation can have at most 1 + k < 1 -f k roots. Thus, the property 
can be satisfied for at most 1 -+- k values of 7. D 

Corollary 2: Let u be a fixed row vector in F'7' and Y a fixed nonzero 

matrix in F^'x( "if row vector g is distributed uniformly over F£, 
then the vector u -f gY is consistent with probability at most ^p. 

Proof: Suppose the ah row of Y. denoted y,. is nonzero. We can 
partition the set of possible values forg such that each partition consists 
of all vectors that differ onl> in the /th entry g,. For each partition, the 
CO! -responding set ol \ allies of u + gY is of the form {«' + <;. y, ! //, 6 
F7).The result follows from Lemma I and the fact that 7 is uniformly 
distributed overF7. O 

Proof of Theorem I: We condition on any given values of 
B,.V,.i = 1.2.3. and C in (2). Writing 4' = A + Bi.Tv becomes 

A' 

\C(A'-Bi)+Bi 
Ba 

From (I), we have 

CiA' -B,) + B2 

ffa 
A' 

-CB\ + fl2 

03 

rv, 
M = v2 

V.iJ 
V^         1 

M = v2-cv, 
V*    J 

which we can simplify to 

:1*=K] (5) 

by writing 

B = 
-CB\ +B2 

B3 
,   V',= 

v2-cv, 
V, 

Since the determinant of a matrix is not changed by adding a multiple of 

«me row to another row. and 

ol such operations, we have 

\i 
B']is obtained from Tv by a sequence 

'I 
,,    is nonsingular <=> Tn is nonsingular. 

Thus, matrix Ä G F*l*r has a conditional distribution that is uniform 

over the set A of values for which 
.4 

B 
is nonsingular. 

The condition that the decoding set contains at least one nongenuine 
packet corresponds to the condition Vp ^ 0. We consider two cases. 
In each case, we show that we can partition the set A such that at most 

I fraction f fe£i J    of values in each partition give decoding outcomes 

M + Af with consistent data and hash \allies. The result then follows 
since the conditional distribution of values within each partition is uni- 
form. 

Case I: V"2 ^ 0. Let t/, be some nonzero row of V"2. and b, the 
ending row of B'. Then 6,Af = v,. 

We first partition A into cosets 

An = {A„+r76, : rer;1}.     » = 1.2 y 

where 

q'i 

This can be done by the following procedure. Any element of .4 can 
be chosen as A\. Matrices A>. Ai A^ are chosen sequentially; 
lor each ft s 2 \, A,» is chosen to be any element of A not in 
the cosets A». » < '"■ Note that this forms a partition of A. since the 
presence ol some clement r in two sets .4,, and A,„. n < r», implies 
that A„, is also in A,, which is a contradiction. It is also clear that each 
coset has size \{r : r £ F£!}| = ry"'. 

For each such coset .4,,. the corresponding values of M satisfy, from 
(5) 

\An+r'bA 
B' 

\An- M = 1 

M = 

hi = 
An 

B 

V 

V, -r'v, 

V,--' 

V2       J 

where r  £  F*1. Let U be the submatrix consisting of the first »1 

columns ol 
A„ 

B 
. Since U is full rank, we can find a set J C 

{1 r \ t f *i indices that correspond to linearly independent rows 

oftf.Let[tfi I tr2]bethe.si x r submatrix of 
B' 

consisting ol 

rows «1 ili indices in J. Consider the corresponding rows of hi + Af. 
which can be expressed in the form 

M.y+tf.V, -Uirrv,+U2V', <o, 

where Mj is the submatrix of M consisting of rows corresponding 
10 sei J. Since V\ is nonsingular by the choice ol j, U\r' takes 
potentially any value in F,}1. Thus, the set of potential values for each 
row of (6), for any given value of Mj. A„, B'. V\. V',. v,, and the 
other rows, is of the form {u •    > G F,;} where u is a function 
of Af .7 .A„.B'.V\.V2. Applying Lemma I yields the result for this 
case. 

Case 2: V', = 0. i.e.. V, - CVt = V, = 0. Then V, £ 0. since 
otherwise V\ = V2 = 0 and Vv = 0 which would contradict the 
assumption that there is at least one nongenuine packet 
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We partition A such that each partition consists of all matrices in .4 
that ha\c ihe same row space 

An= {RAn :  ASF?**1, det<Ä)*0}.     »«1,2 x 
where 

IXI= n (,--,•). »<=$. 

I luv can be done hy choosing any element of A as A\, and chOOtmg 
A„. n = 2 \ scijuontialK such that A„ is any element of .4 not 
in Am.m < n. 

for each .4,.. n = 1 \, the corresponding values of M satish. 

from (5) 

\RA„ "| "V,l 
M = 

I  B 0 

\A"] M = 
'/r'v, l 

[B'\ 0 

i iinl 
-i [R-'V 

M = 
B \ 0 

Let U be the mbtmftix consisting of the first st columns of    _" 
L" 

We can find an ordered set J = {»: i / -, :   i\ < • • • < 
{1 r} of i, indices thai correspond to linearly independent rows 
of U. Let Uj and A/./ be the suhmatnees of U and A/, respectively, 
consisting of the .s, rows corresponding to J. Then U j is nonsingular. 
and the value of the matrix representation of the corresponding decoded 
packets is uniformly distributed over the set 

{Mj+irV, : Ä'gFJ'^.drtdOjfcO}. (7. 

Let /' be the rank of V\. Consider a set of /' linearly independent 
rows of W Denote by I the corresponding sei ot mm indices, and 
denote hy V i the suhmatrix of Vi consisting of those rows. We can 
write 

V, =LV, 

where L € F]1 xu has full rank v. We define Ri = R'L, noting that 

RrVj =R!LVi =R'Vi 

and that Ri is uniformly distributed over all matrices in F*' *" that 
have full rank v. Thus. (7) becomes 

{HV+JbVx:  Ä/ GF;
,XI

. rank(Äi) = i/}. (8) 

Denote by r i r., the rows of R/. and by Ä„ the submatrix of 
It   consiiting of its first »» rows. We consider the rows sequentially, 
starting with the first row t\. For // = 1 f|. we will shou thai 
conditioned on any given value of R,,-\. the probability that the i.. ih 
decoded packet M,„ + r„ Vi is consistent is at most »xL. 

Gue 4: /?„ _ i has zero rank. This is the case if n = 1. or if ?» > 1 
and /?„_,  ■ 0. 

Suppose we remove ihe restriction rank(Äi) = u, so thai r„ is 
uniformly distributed over FJ. By Corollary 2. m,, + r„ V; would 
have consistent data and hash values with probability at most ^-. With 
ihe restriction rank(/?7) = />. the probability of r„ being equal to 0 
is lowered. Since the corresponding decoded packet mlf + r„Vj is 
consistent for r„ = 0, the prohabiht\ that n is consistent is less than m 

Case B: n > 1 and Ä„ _ i has nonzero rank. 

Conditioned on r„ being in the row space of R„-1. r„ = gR„ _, 
where g is uniformly distributed over F£ ~l. Since V / has linearly in- 
dependent rows, R„ _ i Vi ^ 0. and by Corollary 2, the corresponding 
decoded packet 

m,, +r„V/ = m,ri +pÄ„-iV; 

is consistent with probability at mosi ^±I. 
Conditioned on r„ not being in the row space of Ä„_ i, we can par- 

tition the sei of possible values for r„ into coseis 

(r+A-ii fCF;-1} 

where r is not in the row space of R,     . the corresponding values of 
the i a th decoded packet are given by 

Noting as before that Ä„_ t Vj ^ 0 and applying Corollary 2. the /„ th 
decoded packet is consistent with probability at most *±l. D 

Proof of Corollary I: Suppose two or more different sets of 
packets are used for decoding. If not all of them contain at least 
one nongenuine packet, the decoded values obtained from different 
decoding sets will differ: sets containing only genuine packets will be 
decoded to M, while sets containing one or more nongenuinc packets 
will not. This will indicate an error. 

Otherwise, suppose all the decoding sets contain at least one non- 
genuine packet. Let $ denote ihe set of I secrecv -independent packets. 
Consider the decoding sets in turn, denoting by -', the number of un- 
modified packets from S in the ah decoding set that are not in any set 
j < i. Conditioned on any fixed values of packets in sets / < t, there 
remain y lecnq independent packets in the ah decoding set, and we 

have from Theorem I that at most a fraction ( ^ )    of decoding out- 

comes for set / have consistent data and hash values. Thus, the overall 
traction ot consistent decoding outcomes is at most 

(¥)-(¥)'■ 
v. CONCLUSION 

We have described an information-theoretic approach for detecting 
B> /anune modification! m networks employing random linear network 
coding. Byzantine modification detection capability is added by aug- 
menting each packet with a small, flexible number of hash symbols; 
this overhead can be traded off against the detection probability and 
symbol length. The hash symbols can be obtained as a simple poly- 
nomial function of the data symbols. The only necessary condition is 
that the adversarial packets are not all designed with knowledge of the 
random coding coefficients of all other packets received by the sink 
nodes. This approach can be used in conjunction with higher overhead 
schemes that are activated only upon detection of a Byzantine node. 
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Computational Complexity of Continuous Variable 
Quantum Key Distribution 

Yi-Bo Zhao, You-Zhen Gui. Jin-Jian Chen. Zheng-Fu Han. and 
Guang-Can Guo 

Abstract—The continuous variable quantum key distribution has been 
considered to have the potential to provide high secret key rate. However, 
in present experimental demonstrations, the secret kev can be distilled only 
under ven small l«»ss rates. Here. b\ calculating explicitly the computa- 
tional complexity with the channel transmission, we show that under high 
loss rate it is hard to distill the secret key in present continuous variable 
scheme and one of its advantages, the potential of providing high secret 
key rate, may therefore he limited. 

Index Terms—Computational complexity, continuous variable (CV), 
error correction, quantum key distribution (QKI)i, reconciliation. 

I. INTRODUCTION 

Due to its potential for achieving high modulation and detection 
speed, continuous variable (CV) quantum key distribution (QKD) has 
recently attracted more and more attention. Compared to single photon 
counting schemes. CVQKD does not require single photon sources 
and detectors which are technically challenging now. The CVQKD 
schemes typically use the quadrature amplitude of light beams as infor- 
mation carrier, and homodyne detection rather than photon counting. 
Some of these schemes use nonclassical states, such as squeezed states 
ll|orentangledstates(2], while others use coherent states [3|-(6]. Be- 
cause the squeezed slates and entangled states are sensitive to losses m 
the quotum channel, coherent states are much mure attractive lor long 
distance transmission. To improve the performance of the CVQKD 
against the channel loss. Grosshana aal. proposed a reverse reconcilia- 
tion (RR) protocol 111 j. In the traditional direct reconciliation protocol. 
Alice sends Bob the quantum state and also sends the reconciliation 
information later.1 Finally. Bob obtains Alices data without any error. 
However, in the reverse reconciliation protocol, the quantum state is 
sent b> Alice to Bob. but the reconciliation information is sent by Bob 
to Alice. Finally. Alice gets Bob's receded data with no error. 

Tabletop experimental setups that encode information in the phase 
and amplitude of coherent states have been demonstrated (7], (81, and 
recent experiments have shown the feasibility of CVQKD in optical 
fibers up to a distance of 53 km [9], (101, hut without obtaining the 
final secret keys. 

Unlike the single photon QKD schemes, many CVQKD schemes uti- 
lize the inertial quantum noise to protect information from Eve's attack 
|7), 112]. However, at the same lime the quantum noise also causes er 
rors between two legitimate communicators. Alice and Bob. It is w idelv 
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On network coding for security 
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Abstract The use of network coding in military networks 
opens many interesting issues for security. The mixing of 
data inherent to network coding may at first appear to pose 
challenges, but it also enables new security approaches. 
In this paper, we overview the recent current theoretical 
understanding and application areas for network-coding 
based security in the areas of robustness to Byzantine 
attackers and of distributed signature schemes for down- 
loads. 

I  INTRODUCTION 

The Global Information Grid (GIG) is the infrastructure 
used to conduct Net-Centric Operations (NCO). The GIG 
is intended to be a single information-sharing network with 
multiple levels of security and bandwidth capabilities in nel- 
centnc environment A net-centric information environment 
is inclusive of Core and Communities of Interest (COI) 
enterprise services, a data sharing strategy, and the Task-Post- 
Process-Use (TPPU) paradigm The Global Information Grid 
Bandwidth {expansion (GIG-BE) Program was a major DoD 
net-centric transformational initiative executed by Defense 
Information System Agency (DISA) 

The ultimate purpose of the GIG-BE projects is to prov ide B 
secure and reliable platform to enable worldwide Net-Centric 
Operations for intelligence, surveillance and reconnaissance 
and command and control massive amounts of informa- 
tion sharing by providing 'bandwidth-available" environment 
Through GIG-BE, DISA leveraged DOD's existing end-Uv 
end information transport capabilities significantly expanding 
capacity and reliability to select Joint Staff-approved locations 
worldwide and under new hardware and software contracts to 
build a communications infrastructure The GIG-BE that is in- 
tended to provide high-capacity communications linking DoD 
users at locations worldwide is a ground-based opUcal network 
with up to 10-Gbps connections and averaging 105 Gbps per 
link on the backbone networks The GIG-BE program has 
greatly contributed to the development of the real-time Net- 
Centric Operations However, a bottleneck link problem « 
between core networks and edge networks due to the enormous 
difference in bandwidths. 

Hie DoD supports NCO and GIG-BE projects to improve 
quality of services in net-centric environment The current 
coding systems will not be appropriate in the near future 
However, coding based scalable communication technology 
has not been applied to the Net-Centric Operations. This tech- 
nology will satisfy the bandwidth requirements of tomorrow's 
warft ghters. 

Network coding is a recent development in which nodes 
in the network are allowed to perform algebraic operations 
inside the network This scheme was first introduced in [1] 
and a powerful algebraic framework, which allows further 
developments, was provided in [2], [3] For multicast settings, 
it was shown in [4], (5] that network coding performed in a 
distributed, random fashion is with high probability opümal 
A tutorial on network coding can be found in [6], [7] 

The specifics of the Scalable Information Operations (SIO) 
include: 1. scalable coding techniques for network coding, 
compression, channel coding, multimedia data transmission, 
encryption, data sharing, data anonymization, meta database 
management, caching, network security, and intrusion detec- 
tion 2 Bottleneck flow control The purpose of this paper 
is to overview some of die recent developments in applying 
network coding to security in the areas of detection and 
correction of Byzantine attacks, and of cryptography for 
network coding based file downloads. The aim of this paper 
is mainly tutorial and further technical details can be found in 
[8], [9]. Especially, our goal is to sketch how network-coding 
based scalable information operations will mitigate some of 
the security issues in the future net-centric environment 

II. NETWORK-CODING BASED DETECTION AND 

CORRECTION OF BYZANTINE ATTACKERS 

The mixture of data that occurs in network coding can lead 
to pollution attacks through rogue, or Byzantine, nodes in the 
network [10], [11] Such nodes may be unreliable through 
failure or because of their being compromised. While the use 
of network coding would at first appear to render the problem 
of Byzantine attackers worse, it actually provides some strong 
protection for both the detection and correction of such nodes. 

The results in this section have previously appeared in more 
detailed form in [8] We consider network error correction in a 
distributed packet network setting with random linear network 
coding using coding vectors. A batch of r packets is multicast 
from a source node i to | set of sink nodes. An omniscient 
adversary can arbitrarily corrupt the coding vector as well as 
the data symbols of up to :■„ packets A packet that is not a 
linear combinaüon of its input packets is called adversarial 

We describe below a polynomial-complexity network error- 
correcting code whose parameters depend on :.-,. the maximum 
number of adversarial packets, and /.v. the minimum source- 
sink cut capacity (maximum error-free multicast rate) in units 
of packets over the batch The number of packets in the batch 
is set as r = m - zQ. The proportion of redundant symbols in 
each packet denoted p. is set as p = (z0+t)/r for some e > 0. 
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The corresponding information rate of the code approaches 
TO - 2z0 asymptotically as the packet size increases If instead 
of an omniscient adversary we assume that the source and 
sinks share a secret channel not observed by the adversary, a 
higher rate of m - z0 is asymptotically achievable Below we 
give the details of the code for the omniscient adversary case 

For i = 1 r, the ith source packet is represented as a 
length-n row vector x, with entries in a finite field Fq. The first 
n—pn—T entries of the vector are independent exogenous data 
symbols, the next pn are redundant symbols, and the last r 
symbols form the packet's coding vector (the unit vector with 
a single nonzero entry in the i\h position) We denote by X the 
r x n matrix whose iih row is x,. it can be written in the block 
form [ U R I ] where L' denotes the r x (n - pn - r) 
matrix of exogenous data symbols. R denotes the rxpn matrix 
of redundant symbols and I is the r x r identity matrix 

The rfm redundant symbols are obtained as follows. For 
any matrix M. let vj^ denote the column vector obtained 
by stacking the columns of M one above the other, and v^ 
its transpose, a row vector. Matrix X. represented in column 
vector form, is given by vj = [VU,VR,VI] . Let D be 
an rpn x rn matrix obtained by choosing each entry inde- 
pendently and uniformly at random from F^ The redundant 
symbols constituting VR (or R) are obtained by solving the 
matrix equation 

D[vu,vR,v,]7' = 0 0) 
for VR The value of D is known to all parties 

An adversarial packet can be viewed as an additional source 
packet The vector representing the ?th adversarial packet is 
denoted /..  Let Z denote the matrix whose ah row is z, 

We focus on any one of the sink nodes t Let w be 
the number o( linearly independent packets received by t, 
let Y € Fq

eyn denote the matrix whose »th row is the 
vector representing the »th of these packets Since all coding 
operations in the network are scalar linear operaüoas in ¥q, 
Y can be he expressed as 

Y = GX + KZ (2) 

where matrices G € Fyxr and K e Fyxz represent the linear 
mappings from the source and adversarial packets respectively 
to the sink's set of linearly independent input packets 

Since the last r columns of X form an identity matrix, the 
matrix G' formed by the last r columns of Y is given by 

G' = G + KL. (3) 

where L is the matrix formed by the last r columns of Z The 
sink knows G' but not G. Thus, we rewrite (2) as 

Y    =    G'X + K(Z-LX) 

=   G'X + E (4) 

Matrix E gives the difference between the data values in the 
received packets and the data values corresponding to their 
coding vectors, its last r columns are all zero 

Lemma 1: With probability at least 1 - «/<?, the matrix G' 
has full column rank, where n is the number of links in the 
network 

i he decoding process at sink r is as follows. First, the sink 
determines a, the minimum cut from the adversarial packets 
to the sink. This is with high probability equal to w - r. Next, 
it chooses z columns of Y that, together with the columns 
of G'. form a basis for the column space of Y We assume 
without loss of generality that the first i columns are chosen, 
and we denote the corresponding submatrix G". Rewriting Y 
in the basis corresponding to the matrix [G" G'J, we have 

I      Yz     0 
0 Y*        \r 

Y = [G" G] (5) 

This can be reduced by line;ir algebraic manipulations to 

<.\        G;(Y*+XiY*) (6) 

where Xt,X2 are the matrices formed by the first z columns 
of X and the next n - z - r columns of X respectively. 

Proposition 1: With probability greater than 1 - gn*, equa- 
■ (1) and (6) can be solved simultaneously to recover X 

The decoding algorithm has complexity 0(n3m3). 

KYPTOGRAPHY FOR CONTENT DISTRIBUTION WITH 
NETWORK CODING 

A. Background 

Recently, several researchers explored the use of network 
coding in peer-to-peer (P2P) content distribution and distrib- 
uted storage systems [12], [13], [14] A P2P network has a 
fully distributed architecture, and the peers in the network 
form a cooperative network that shares the resources, such 
as storage, CPU, and bandwidth, of all the computers in the 
network This architecture offers a cost-effective and scalable 
way to distribute software updates, videos, and other large files 
to a large number of users 

The best example of a P2P cooperative architecture is the 
BitTorrent system [15], which splits large files into small 
blocks, and after a node downloads a block from the original 
server or from another peer, it becomes a server for that 
particular block. Although BitTorrent has become extrem els- 
popular for distribution of large files over the Internet, it 
may suffer from a number of inefficiencies which decrease its 
overall performance For example, scheduling is a key problem 
in BitTorrent it is difficult to efficiently select which block(s) 
to download first and from svhere If a rare block is only 
found on peers with slow connections, this would create a 
bottleneck for all the downloaders Several ad hoc strategies 
are used in BitTorrent to ensure that different blocks are 
equally spread in the system as the system evolves. References 
[12], 113] propose the use of network coding to increase 
the efficiency of content distribution in a P2P cooperative 
architecture The main idea of this approach is the following 
The server breaks the file to be distributed into small blocks, 
and whenever a peer requests a file, the server sends a random 
linear combination of all the blocks. As in BitTorrent a peer 
acts as a server to the blocks it has obtained However, in a 
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lmear coding scheme, any output from a peer node is also 
a random linear combination of all the blocks it has already 
received. A peer node can reconstruct the whole file when 
it has received enough degrees of freedom to decode all the 
blocks. This scheme is completely distributed, and eliminates 
the need for a scheduler, as any block transmitted contains 
partial information of all the blocks that the sender possesses. 
It has been shown both mathematically [12] and through live 
trials [16] that the random linear coding scheme significantly 
reduces the downloading time and improves the robustness of 
the system 

A major concern for any network coding system is the 
protection against malicious nodes Take the above content 
distribution system for example. If a node in the P2P network 
behaves maliciously, it can create a polluted block with 
valid coding coefficients, and then sends it out Here, coding 
coefficients refer to the random linear coefficients used to 
generate this block If there is no mechanism for a peer to 
check the integrity of a received block, a receiver of this 
polluted block would not be able to decode anything for the 
file at all. even if all the other blocks it has received are valid 
To make things worse, the receiver would mix this polluted 
block with other blocks and send them out to other peers, and 
the pollution can quickly propagate to the whole network. This 
makes coding based content distribution even more vulnerable 
than the traditional P2P networks, and several attempts were 
made to address this problem References [12], [17] proposed 
to use homomorphic hash functions in content distnbuüon 
systems to detect polluted packets, and [ 18] suggested the use 
of a Secure Random Checksum (SRC) which requires less 
computation than the homomorphic hash function II ov. 
[18] requires a secure channel to transmit the SRCs to all 
the nodes in the network. Charles et al [19] proposed a 
signature scheme based on Weil pairing on elliptic curves and 
provides authentication o( the data in addition to pollution 
detection, but the computation complexity of this solution is 
quite high Moreover, the security offered by elliptic curves 
that admit Weil pairing is still a topic of debate in the scientific 
community 

In this section, we overview a new signature scheme, 
presented in greater detail in [9], that is not based on elliptic 
curves, and is designed specifically for random linear coded 
systems. We view all blocks of the file as vectors, and make 
use of the fact that all valid vectors transmitted in the network 
should belong to the subspace spanned by the original set of 
vectors from the file We present a signature that can be used 
to easily check the membership of a received vector in the 
given subspace, and at the same time, it is hard for a node to 
generate a vector that is not in that subspace but passes the 
signature test We show that this signature scheme is secure, 
and that the overhead for the scheme is negligible for large 
files 

B. Problem Setup 

We model the network by a directed graph Gj = (N, A), 
where N is the set of nodes, and A is the set of communication 

links. A source node s € N wishes to send a large file, of size 
M, to a set of client nodes, T c JV, and we refer to all the 
clients as peers. The large file is divided into m blocks, and 
any peer receives different blocks from the source node or 
from other peers In this framework, a peer is also a server to 
blocks it has downloaded, and always sends out random linear 
combinations of all the blocks it has obtained so far to other 
peers. When a peer has received enough degrees of freedom 
to decode the data, I e, it has received m linearly independent 
blocks, it can re-construct the whole file. 

Specifically, we view the m blocks of the file, vi,...,vm, 
as elements in n-dimensional vector space FJJ, where p is 
a prime The source node augments these vectors to create 
vectors v j,..., vm, given by 

v< = (0 1 Q,ffa Vin), 

where the first m elements are zero except that the i\h one is 
1, and Vi-j € Fp is the ;th element in v. Packets received by 
the peers are lmear combinations of the augmented vectors. 

W = V^Vj, 

where ft is the weight of v, in w. We see that the additional 
m elements in the front of the augmented vector keep track 
of the code vector, 0, of the corresponding packet. 

As mentioned in the previous subsection, this kind of 
network coding scheme is vulnerable to pollution attacks by 
malicious nodes Unlike uncoded systems where the source 
knows all the blocks being transmitted in the network, and 
therefore, can sign each one of them, in a coded system, each 
peer produces "new" packets, and standard digital signature 
schemes do not apply here. In the next subsection, we intro- 
duce a novel signature scheme for the coded system 

C. Signature scheme for network coding 

We note that the vectors \x vm span a subspace V of 
Fy1"1"", and a received vector w is a valid linear combination of 
vectors v1?..., vm if and only if it belongs to the subspace V. 
This is the key observation for our signature scheme. In the 
scheme described below, we present a system that is based 
upon standard modulo arithmetic (in particular the hardness 
of the Discrete Logarithm problem) and upon an invariant 
signature <r(V) for the linear span V. Each node verifies the 
integrity of a received vector w by checking the membership 
of w in V based on the signature cr(V). 

Our signature scheme is defined by the following ingredi- 
ents, which are independent of the filers) to be distributed 

• q: a large prime number such that p is a divisor of q — 1 
Note that standard techniques, such as that used in Digital 
Signature Algorithm (DSA), apply to find such q. 

• g a generator of the group G of order pmF, Since the 
order of the multiplicative group Fj is q - 1, which is a 
multiple of ]>, we can always find a subgroup, (?, with 
order p in FJ 

• Private key   K^  -  {a,}i=1 m+n, a random set of 
elements in FJ. K^ is only known to the source. 
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. Public key: Kpu   =   {/i<  =  <7Q'}<=i,...,m+n. Kpli is 
signed by some standard signature scheme, e.g., DSA, 
and published by the source. 

To distribute a file in a secure manner, the signature scheme 
works as follows 

1) Using the vectors Vi,...,vm from the file, the source 
finds a vector u = («i, ...,um>„) € ¥£+" orthogonal 
to all vectors in \'  Specifically, the source finds a non- 

solution, u, to the equations 

vf   u = 0,      i = 1 m. 

2) The source computes vector x = (uif011,1x2/a ■ 
"m t n/ (>m | n ) 

3) The source signs x with some standard signature scheme 
and publishes x. Wc refer to the vector x as the 
signature, o{V), of the file being distributed 

4) The client node verifies that x is signed by the source. 
5) When a node receives a vector w and wants to venh 

that w is in V, it computes 

m+n 

n 
i=i 

<»- Uh'w- 
and verifies that d = 1. 

To see that d is equal to 1 for any valid w, we have 

d=l[ fcf*-^^.! 

where the last equality comes from the fact that u is orthogonal 
to all vectors in \' 

Next, we show that the system described above is secure In 
essence, the theorem below shows that given a set of vectors 
that satisfy the signature verification criterion, it is provably 
as hard as the Discrete Logarithm problem to find new vc 
that also satisfy the verification criterion other than those that 
are in the linear span of the vectors already known 
Definition 1. Let p be a prime number and G be a multi- 
plicative cyclic group of order p. Let k and n be two integers 
such that k < n, and T = {/»i,...,/»„} be a set of generators 
of G Given a linear subspace» Vy of rank k in FJ) such that 

for every v € V, the equality V = [ELi*? = { nolds> we 

define the {p,k. «)-Diffie-Hellman problem as the problem of 
finding a vector w € FJ) with rw ■ 1 but w £ V 

By this definition, the problem of finding an invalid vector 
that satisfies our signature verification criterion is a (p,m,m-f- 
n)-Diffie-Hellman problem 
Theorem 1. For any k < n - 1, the (p, k, n)-Diffie-Hellman 
problem is as hard as the Discrete Logarithm problem. 

Proof: Assume that we have an efficient algorithm to 
solve the (p, k, /O-Difiie-Hellman problem, and we wish to 
compute the discrete algorithm \ogg(z) for some z = gT, 
where g is a generator of a cyclic group G with order p 
We can choose two random vectors r = (ri,...,rn) and 
s= (si,...,sn) in FJ, and construct T = {hi hu}, where 

hi = zr*g'' for i = l,...,n. We then find k linearly indepen- 
dent (and otherwise random) solution vectors Vi v*. to the 
equations 

v • r = 0 and v • s = 0. 

Note that there exist n-2 linearly independent solutions to the 
above equations Let V be the linear span of {vx,..., vfc}, it is 
clear that any vector v £ V satisfies Tv - 1 Now, if we have 
an algorithm for the (p, rc,n)-Diffie-Hellman problem, we can 
find a vector w ^ V such that rw = 1. This vector would 
satisfy w • (xr — s) = 0 Since r is statistically independent 
from (xr + s), with probability greater than 1 - 1/p, we have 
w • r j£ 0. In this case, we can compute 

log (z) = x = 
w • s 

w   r* 

This means the ability to solve the (p, /c,n)-Difrie-Hellman 
problem implies the ability to solve the Discrete Logarithm 
problem ■ 

This proof is an adaptaüon of a proof that appeared in an 
earlier publication by Boneh el, al [20]. 

D. Discussion 

Our signature scheme nicely makes use of the linearity 
property of random linear network coding, and enables the 
peers to check the integrity of packets without the requirement 
for a secure channel Also, the computation involved in the 
signature generation and verification processes is very simple 

Next we examine the overhead incurred by this signature 
scheme The size of each file block is B = n log(p) and we 
have M - mn log(p) The size of each augmented vector 
(with coding vectors in the front) is Ba = (m + n) log(p), 
and thus, the overhead of the coding vector is m/n times 
the file size Note that this is the overhead pertaining to the 
linear coding scheme, not to our signature scheme, and any 
practical network coding system would make m <& n. The 
initial setup of our signature scheme involves the publishing 
of the public key. Kpu, which has size (m ■+• n) log(<?) In 
typical cryptographic applications, the size of /> is 20 bytes 
(160 bits), and the size of g is 128 bytes (1024 bits), thus, the 
size of Kp,j is approximately equal to (>(m + n)/mn times 
the file size 

For distribution of each file, the incremental overhead of 
our scheme consists of two parts the public data, Kpu, and 
the signature vector, x 

For the public key, Kp^, we note that it cannot be fully 
reused for multiple files, as it is possible for a malicious node 
to generate a invalid vector that satisfies the check d = 1 
using information obtained from previously downloaded files 
To prevent this from happening, we can publish a new public 
key for each file, and as mentioned above, the overhead is 
about 6(m + n)/mn times the file size, which is small as 
long as 6 < m < n. 

Alternatively, for every new file, we can randomly pick an 
integer i between 1 and m + n, select a new random value 
for a, in the private key, and just publish the new h, = g°* 
The overhead for this method is only 6/mn times the file 
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size. As an example, if we have a file of size 10MB, divided 
into m = 100 blocks, the value of n would be in the order of 
thousands, and thus, this overhead is less than 0.01% of the rile 
size. This method should provide good security except in the 
case where we expect the vector w to have low variability, 
for example, has many zeros Security can be increased by 
changing more elements in the private key for each new file 

In addition, for each new file distributed, we also have to 
publish a new signature x, which is computed from a vector 
u that is orthogonal to the subspace V spanned by the file 
Since the V has dimension m. it is sufficient to only replace m 
elements in u to generate a vector orthogonal to the new file 
Since the first m elements in the vectors vi,..., vm are always 
linearly independent (they are the code vectors), it suffices to 
just modify the entries uL to um Assume that the ?th element 
in the private key is the only one that has been changed for 
the distribution of the new file, and that i is between 1 and m, 
then we only need to publish xi to xm for the new signature 
vector This part of the overhead has size m log(p), and the 
ratio between this overhead and the original file size N is 1/n 
Again, take a 10MB file for example, this overhead is less than 

of the file size 
Therefore, after the initial setup, each additional file dis- 

tributed only incurs a negligible amount of overhead using 
our signature scheme. 

Finally, we would like to point out that, under our assump- 
tions that there is no secure side channel from the source to 
all the peers and that the public key is available to all the 
peers, our signature scheme has to be used on the original 
file vectors not on hash functions This is because to maintain 
the security of the system, we need to use a one-way hash 
function that is homomorphic, however, we are not aware of 
any such hash function Although [12] and [17] suggested 
usage of homomorphic hash functions for network coding, 
[12] assumed that the intermediate nodes do not know the 
parameters used for generating the hash function, and [17] 
assumed that a secure channel is available to transmit the hash 
values of all the blocks from the source node to the peers 
Under our more relaxed assumpüons, these hash functions 
would not work 

[V CONCLUSIONS 

In this paper, we have overviewed some of the security capa- 
bilities of network coding, particularly in the area of robustness 
to Byzantine attacks and to distributed authentication in peer- 
to-peer downloads The implications of network coding for 
security are not limited to these applications For instance, 
network coding's mixture of data can be used to use data 
for effective countermeasures to eavesdropping In effect, data 
is used, after compression, as a one-time-pad in the system. 
[211 122]. [23], [24] None of these techniques or the ones 
summarized in this paper present in themselves a complete 
security solution, and we have not attempted to implement 
any of our security techniques However, as network coding 
opens entirely new venues for the operation of networks, we 
expect to see security challenges inherited from traditional 

forms of networking, the mitigation of current problems but 
also the emergence of new classes of data sharing problems in 
Net-Centric environment We will further develop scalable and 
secure network coding techniques to solve multimedia delivery 
and massive data sharing problems in Airborne/UAV networks 
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Abstract— 
Network coding substantial!) increases network throughput. 

But since it involves mixing of information inside the network, 
a single corrupted packet generated by a malicious nodi- can 
end up contaminating all the information reaching a destination, 
preventing decoding. 

I his paper introduces the tirsi distributed ftetynomttli Mm* rate- 
optimal network codes that work in the presence of B\/antiiu 
nodes. Wc present algorithms that target adversaries with different 
attacking capabilities. When the adversary can eavesdrop on all 
links and jam zo links . our first algorithm achieves a rate of 

. where I is the network capacity. In contrast, «hen the 
adversary has limited snooping capabilities, we provide algorithms 
that achieve the higher rate of C 

Our algorithms attain the optimal rale given the strength of 
the adversary. They are information-theoretically secure. They 
operate in a distributed manner, assume no knowledge of the 
topology, and can be designed and implemented in polynomial- 
time. Furthermore, onlj the source and destination need to be 
modified; non-malicious nodi's inside the network are oblivious to 
the presence of adversaries and implement a classical distributed 
network code. Finally, our algorithms work over wired and wireless 
networks. 

I. INTRODUCTION 

Network coding allows the routers to mix the information 
COQtenl in packets betöre forwarding ihem. This mixing has 
been theoretically proven to maximize network throughput (I]. 
[19], [13]. It can be done in a distributed manner with low com 
plexity, and is robust to packet losses and network failures [8], 
1231 Furthermore, recent implementations of network coding 
for wired and wireless environments demonstrate its practical 
benefits [I6|. [6]. 

But what if the network contains malicious nodes? A ma- 
licious node may pretend to forward packets irom source lo 
destination, while in reality it injects corrupted packets into 
[he information How. Since network coding makes the routers 
Dil packets content, a single corrupted packet can end up 
corrupting all the information reaching a destination. Unless this 
problem is solved, network coding may perform much worse 
than pure forwarding in the presence of adversaries 

The interplay of network coding and Byzantine adversaries 
has been examined by a few recent papers. Some detect the 
presence of an adversary [10], others correct the errors he injects 
into the codes under specific conditions [7], [12], [20], and a 
few bound the maximum achievable rate in such adverse envi- 
ronments 131. [29]. But attaining optimal rales using distributed 
and low-complexity codes is still an open problem. 

This paper designs distributed polynomial-time rate-optimal 
network codes that combat Byzantine adversaries We present 
three algorithms that target adversaries with different strengths. 
The adversary can inject z0 packets per unit time, but his 

listening power vanes. When the adversary is omniscient, i.c.. he 
observes transmissions on the entire network, our codes achieve 
the rate of C- 2zo. with high probability. When the adw 
knowledge is limited, cither because he eavesdrops only on a 
subset of the links or the source and destination have a low-rate 
secret-channel, our algorithms deliver the higher rate of C-zo- 

The intuition underlying all of our algorithms is that the 
aggregate packets from the adversarial nodes can be thought 

>nd source. The information received at the desti- 
nation is I lineai transform of the source's and the adversary's 
information. Given enough linear combinations (enough coded 
packetsi. the destination can decode both sources The question 
however is how does the destination distill out the source's 
information from the received mixture. To do so, the source\ 
information has to satisfy certain constraints that the attacker's 
data cannot satisfy. This can be done by judiciously adding 
redundancy at the source. For example, the source may add 
redundancy lo ensure lhat certain functions evaluate to zero 
on the original source's data, and thus can be used to distill 
the source's data from ihe adversary's. The challenge addressed 
herein is to design the redundancy thai achieves the optimal 
rates. 

This paper makes several contributions. The algorithms 
presented herein arc the first distributed algoritlims with 
polynomial-time complexity in design and implcmetiniiion, yet 
are rate-optimal. In lact. since pure forwarding is a special 
case ol network coding, being rate-optimal, our algorithms also 
achieve a higher rate than any approach that diKs not use 
network coding. They assume no knowledge of the topology 
and work in both wired and wireless networks. Furthermore. 
implementing our algorithms involves only a slight modification 
of the source and destination while the internal nodes can 
continue to use standard network coding. 

II     It i.USTRATING EXAMPLE 

We illustrate the intuition underlying our approach using 
the toy example in Fig. 1. Calvin wants to prevent the flow 
of information from Alice to Bob. or at least minimize it All 
links have a capacity o\ one packet per unit time. Further, Calvin 
connects to the three routers through an intermediate node. The 
intermediate node just relays all the packets Calvin sends him 
to the three routers. The network capacity. <'. is by definition 
the min-cut from Alice to Boh. It is equal to 3 packets per unit 
time. The min-cut from Calvin to the destination is Zo m 1 
packet per unit time. Hence, the maximum rate from Alice to 
Bob in this scenario is bounded by C- zo = 2 packets per unit 
nine as proven in 112], 
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o,X,+p,Z 

,x, + p,z 

Kif». I A simple example. Alice transmits to Boh. Calvin injects 
corrupted packets into their communication. The grey nodes in 
the middle perform network coding. 

We express each packet as I vector of n bytes, when 
I sufficiently large number. The routers create random linear 
combinations of the packets they recei\e. Hence, even unit of 
tune Boh receives the packetl 

1 is | single byte. Thus, instead of devoting a whole vector 
Of II bytes for added redundancy (as in (2)1. Alice |ust needs 
to introduce 6 extra bytes of redundancy to compensate lor the 

md 1 's being unknown. 

Alice imposes constraints on her data to help Bob to decode. 
for instance, a simple constraint could be that the first byte in 
each packet equals zero. This constraint provides Bob with 2 
additional equations (recall that the lust h>te in x3 is forced to 
0 due to (2). and hence the new constraint produces 2 additional 
equations rather than 3). Rewriting 111 for the first byte of each 
packet, we obtain: 

y,    =    a,Xi+ftz, i€ {1,2,3}, (I) 

where xj's are vectors representing the three packets Mice sent. 
/. is the packet Calvin sent. 0« and   f are random coefficients. 

In our example, the routers operate over bytes: the iih byte 
in WD outgoing packet is ;i linear combination ol ■" hues in the 
incoming packets. Thus. (1) also describes the relation between 
the individual bytes in yYs and the corresponding bytes in xt's 
and z. 

Since the routers mix the content ot the packets. Mice cannot 
just sign her packets and have Bob discard all packets with 
incorrect signatures. To decode, Bob has to somehow distill the 
\, s tiom the yYs he receives. 

As a first attempt at solving the problem, let us assume that 
Bob knows the topology, i.e., he knows that the packets he 
receives are pnxluced using (1). Further, let us assume that he 
knows the random coefficients used by the routers to code the 
packets, i.e., he knows the values of o,'s and .1,'s. To decode, 
Bob has to solve < 1). Since each packet contains n bytes, the 
system in (1) represents An equations, one equation per received 
byte. Bob has An equations and In unknowns (// unknown bytes 
per each packet z. xY x2 and x;i). Hence. Bob cannot decode 

To address the above situation. Alice needs to add redun- 
dancv to her transmitted packets. After all, as noted above, for 
the particular example in Fig. 1, Alice's rate is bounded h\ 2 
packets per unit time. Thus. Alice should send no more than 2 
packets worth iA information. She can use the third packet for 
added redundancy. Suppose Alice sets 

*3 = *1 + X2 (2) 

Ihis coding strategy is public to both Bob and Calvin. Since 
each packet contains n bytes, combining (2) with (1), Bob 
obtains a system o\ In equations with fel unknowns, which 
he can solve to decode. 

But in the general case. Bob knows nothing about the 
coefficients used by the routers, the topology, or the overall 
network transform. Said differently, the (i coefficients corre- 
sponding to the '. s and die I \ are usually unknown to Bob. 
Thus, given (I) and (2), Bob is faced with \n equations and 
4n+6 unknowns, and thus cannot deccxle. The matter is further 
complicated by the non-linearity of (1). which involves the 
product of unknown terms n.x, and i,z. 

The first idea we exploit in our solution is that while z is 
a whole unknown packet of // bytes, each of the coefficients 

y,.i = aixlA+!3izl = ßizu ,i€{l,2,3} (3) 

where y. , denotes the j"' byte in the i"' received packet. The 
above equations provide Bob with a scaled version of tfa 
i.e., they are all multiplied by Z\. 

Our second observation is that the scaled version of t! 
suffices for Bob to decode x. This can be seen by a simple 
algebraic manipulation o\ (I i. Bob can rewrite the equations 
in (11 b> multiplying and dividing the second term with :i and 
appending (2) to obtain 

y,    =    a.xi + Cd^Mz/s!), i£ {1,2,3} ,4» 

Notice that Bob already knows all three *,:i terms from (3). 
The term (§/*i) can be considered a single unknown because 
Bob dtvs not care about estimating the exact value of z. 

To allow Bob to disco\er the o, \. Alice similarly adds 4 
more bytes of redundancy by imposing constraints on the second 
and third bytes in her packets. For example, she chooses 

X2.2 = I and Ji.3 = —12,3 = 1 (combined with (2), these 
constraints force X3.2 = 2 and X3.3 = 0). Substituting the values 

,). {fhzi) and 0$B*I) *rom (3) g'ves Bob the following 
equations. 

yi.2 = Qi +yi.if>2/*i)t 
1/2.2 = a2 + y2,i (22/^1), 

3/3.2 = 2Q3 +y3,i(W~i)< 

Vi,3 = öj +yiAz3/zl) 
y2.3 = -a2 + y2,i 03/*i) • (5) 

Now Bob has 6 linear equations with the '» unknowns -1;. 
02,03. W^i and 23/21. and thev cm he solved to obtain the 
a s Hence we are essentially back to the situation where Bob 
knows the u,\ and  Vs, and can solve for x;*s. 

One complication still remains. If Calvin knows the con- 
straints 00 Alice's data, he will try to assign values to his bytes 
to prevent Bob from decoding. For example, if Calvin knows 
that the first byte of each of Alice's packets is zero, he too 
would set the first byte in his packet ;, to zero, in which case 
Bob does not obtain any information ahout the   Vs from (4). 

There arc nro wtyi out of this situation. Suppose Alice 
could communicate to Bob a small message that is secret from 
Calvin. In this case, she could compute a small number of 
hashes of her data, ami transmit them to Bob. These hashes 
correspond to constraints on her data, which enables Bob to 
decode. If Alice cannot communicate secretly with Bob the 
leverages the fact that Calvin can inject only one fake packet. 
Since Calvin's packet is n bytes long, he can cancel out at most 
n hashes. Ii Alice injectl n r 1 hashes, there must be at least 
one hash Calvin cannot cancel. This hash enables Bob to find 

'l and decode. Notice, however, that the n -» 1 additional 
constraints imposed on the bytes in $ and $2 mean that Alice 
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can only transmit at most n - 1 bytes of data to Bob. For a 
large number of bytes n in a packet, this rate is asymptotically 
optimal against an all-knowing adversary [3|. 

After giving HOB intuition on boH our scheme works, the 
icst of this paper considers the general problem o\ network 
coding over completely unknown topology, in the presence of 
an adversary who has partial or lull knowledge of the network 
and transmissions m it. 

III. RELAI'KI) WORK 

We start with a brief summary of network coding, followed 
by a survey of prior work on Byzantine adversaries in networks 

A. Network Coding Background 

Work on network coding started with a pioneering paper 
by Ahlswede et al. [I], which establishes the value of coding 
in the rouiers and pro\ides theoretical bounds on the capacity 
ot such networks. The combination of (21), [191. |13| shows 
that, for multicast traffic, linear codes achieve the maximum 
capacity bounds, and coding and decoding can be done in 
polynomial time. Additionally, Ho et al show that the above 
is true even when the routers pick random coefficients |8|. 
Researcher« have extended the above results to a variety of 
areas including wireless networks [23], [15]. [161. energy [28]. 
secrecy [2], content distribution [6]. and distributed storage [14]. 

B. Byzantine Adversaries in Networks 

A Byzantine attacker is | malicious adversary hidden in 
I network, capable of eavesdropping and jamming commu- 
nications. Prior research has examined these attacks in the 
presence of network coding and without it. In the absence 
of network coding, Dolev et al. [5] consider the problem 
of communicating o\er a known graph containing Byzantine 
adversaries. They show that for k adversarial nodes, reliable 
communication is possible only if the graph has more than 
2k + 1 vertex connectivity. Subramamam extends this result 
to unknown graphs (261. Pclc et al. address the same problem 
in wireless networks by modeling malicious nodes as locally 
bounded Byzantine faults, i.e.. nodes can overhear and jam 
packets only in their neighborhood 124] 

The interplay of network coding and By/antine adversaries 
was first examined in |10). which delects the existence of an 
adversary but does not provide an error-correction scheme. 
This has been followed by the work of Cai and Ycung [29]. 
[3]. who generali/e standard bounds on error-correcting codes 
to networks, without providing any explicit algorithms for 
achiev mg these bounds. Our work presents | constructive design 
to achieve those bounds. 

The problem of correcting errors in the presence ot both 
network coding and Byvanime adversaries has been considered 
by a few prior proposals. Earlier work |20|. |7| assumes a 
centralized trusted authority that provides hashes of the original 
packets to each node in the network. More recent work by 
Charles et al. |4| obviates the need for a trusted entity under the 
assumption that the majority of packets received by each node 
is uncorrupted. In contrast to the above two schemes which arc 
cryptographically secure, in a previous work [12]. we consider 
an information-theoretically rate-optimal solution to Byzantine 
attacks for wired networks, w Inch however requires a centralized 
design. This paper builds on the above prior schemes to combine 

| Scheme Charles et.al. [4] Jaggi et.al. (I2| Ours | 
| Info. Theoretic Security No Yes Yes   | 
1 Distributed Yes No Yes 

Internal Node Complexity High Low Low 
[ Decoding Complexity High Exponential Low 
1 Ceneral Graphs No Yes Yes   | 
1  Universal No No Yes   | 

TABLE I—Comparison between the results in this paper and some 
prior papers. 

their desirable traits; it provides a distributed solution that is 
information-theoretically rate optimal and can be designed and 
implemented in polynomial lime. Furthermore, our algorithms 
have new features; they assume no knowledge of the topology, 
dO not mquilV any new functionality at internal nodes, ami 
«Odt lor both wired and wireless networks. Recent work [17| 
has considered the same problem from a different perspective, 
their results and bounds are similar to GUTS. Table I highlights 
similarities and differences from prior work. 

IV. MODEL & DEFINITIONS 

We use a general model that encompasses both wired and 
wireless networks. To simplify notation, we consider only the 
problem of communicating from a single source to a single 
destination. But similar to most network coding algorithms, our 
techniques generalize to multicast traffic. 

A. Threat Model 

There is a source. Alice, and a destination. Bob. who 
communicate over a wired or wireless network. There is also an 
attacker Calvin, hidden somewhere in the network. Calvin aims 
to prevent the transfer of information from Alice to Bob. or at 
least to minimize it. He can observe some of the transmissions, 
and can inject his own. When he injects his own packets, he 
pretends they arc part of the information (low from Alice to 
Bob. 

Calvin is quite strong. He is computationally unbounded. He 
knows the encoding and decoding schemes of Alice and Bob. 
and the network code implemented by the interior nodes. He 
also knows the exact network realization. 

B. Network and Code Model 

This section describes the network model, the packet format, 
and how the network transforms the packets. 

Network Model: The network is modeled as a hypergraph |22|. 
Each packet transmission corresponds to a hyperedge directed 
from the transmitting node to the set of observer nodes. The 
hypergraph model captures both wired and wireless networks. 
For wired networks, the hyperedge is a simple point-to-point 
link. For wireless, each such hyperedge is determined by 
instantaneous channel realizations (packets may be lost due lo 
fading or collisions) and connects the transmitter to all nodes 
that hear the transmission. The hypergraph is unknown to Alice 
and Bob prior to transmission. 

Source: Alice generates incompressible data that she wishes 
to deliver to Bob over the network. To do so. Alice encodes 
her data as dictated by the encoding algorithm (described in 
subsequent sections). She divides the encoded data into batches 
of 6 packets. For clarity, we focus on the encoding and decoding 
of one batch. 
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A packet contains a sequence of n symbols from the finite 
field F,r All arithmetic operations henceforth arc done over 
symbols from Fq. (See the treatment in |18|). Out of the n 
symbols in Alice's packet, Bl\ symbols are redundancy added 
by the source. 

Alice organi/es the data in each batch into a matrix A as 
shown m Fig. 2. We denote the \i. j),h element in the matnx by 

The /"' row in the matnx A is just the /"' packet in the 
batch. Fig. 2 shows that similarly to standard network codes |X|. 
some of the redundancy in the batch is devoted to sending the 
identity matrix. / Also, as in [8]. Alice takes random linear 
combinations of the rows QJ X to generate her transmitted 
packets. As the packets traverse the network, the internal nodes 
apply a linear transform to the batch. The identity matrix 
receives the same linear transform. The destination dii 
the linear relation between the packets it receives and those 
transmitted by inspecting how / was transformed. 

Adversary: Let the matnx / be the information Calvin injects 
into each batch. The si/e of this matrix is z0 x n, wheiv 
the si/e of the min-cut from (ahm to the destination 

Destination: Analogously to how Alice generates V. the des- 
tination Bob organizes the received packets into a matrix Y. 
The i,h received packet conesponds to the /"' row of V. Note 
that the number of received packets, and therefore the number 
of rows ot V. is a variable dependent on the network topology. 
I he column rank ol V. however, is /, - ;,, Bob attempts to 
reconstruct Alice's information. A . using the matnx of N 
packets ) 

('. Definitions 

We define the following concepts 

• The network Capacity, denoted by <". is the lime-average 
of the maximum number of packets that can be delivered 
from Alice to Bob. assuming no adversanal interference, 
i.e.. the max flow. It can be also expressed as the min-cut 
from source to destination. (For the conespondmg multicast 
case. (' is defined as the minimum of the min-cuts over all 
destinations.) 

• The error pmbabilit\ is the probability that Bob's recon- 
struction ol Mice's information a inaccurate. 

• The rate, R, is the number of information bits in a batch 
amoni/cd by the length of a packet in hits 

• The rate R is said to be achievable if for any i > 0, any 
6 > 0. and sufficiently large n. there exists a block-length-n 
network code with a redundancy <> and a probability of error 
less than e. 

• A code is said lo be universal if the code design is indepen- 
dent of zo- 

V. NiiiwoRK TRANSFORM 

This section explains how Alice's packets get transformed 
as they travel through the network. It examines the effect the 
adversary has on the received packets, and Bob's decoding 
problem. 

The network perfonns a classical distributed network 
code [8]. Specifically, each packet transmitted by an internal 
node is a random linear combination of its incoming packets 

^        n-packetstee 

M3: B - Batch Size 

67» - redundant symbols 

n-packatstze 
I .   I ♦      No. of packets 
I  r I *  °    Calvin miects 

A    packet Hi 

Calvin miects 

C-Network Capacity 

Fig. 2—Alice, Bob and Calvin's information matrices. 

Variable Definition 

1  h Number of packets in a batch 
zo Number of packets Calvin can inject 
Zl Number of packets Calvin can hear 

1 n 
Length of each packet. 

& Fractional redundancy introduced by Alice. 
t Proxy of the transfer matrix T representing the 1 

network transform. 

IAIII.I  II    Terms used in the paper. 

Thus,  the effect  of the  network at  the destination can  be 
summarized as follows. 

Y = TX + TZ^YZ, (6) 

where X is the batch of packets sent by Alice. / refers to the 
packets Calvin miects into Alice's batch, and V is the received 
batch. The vanablc T refers to the linear transform from Alice 
to Bob. while Tg—y refers to the linear transfomi from Calvin 
to Bob. 

As explained in §IV. a classical random network code's A 
includes the identity matnx as pan of each batch. The identity 
matrix sent by Alice incurs the same transform as the rest of 
the hatch. Thus. 

f = Tl + Tz-, L (7) 

«iiete 1 and /. are the columns corresponding to /'s location 
in Y and Z respectively, as shown in Fig  2 

In standard network coding, there is no adversary, i.e., Z = 
Q and /. ii. and thus / = T. The destination receives a 
description of the network transform in /' and can decode X as 
7' ' V. In the presence of the adversary, however, the destination 
needs to solve (6) and (7) lo extract the value of X. 

By substituting T from (7), (6) can be simplified to get 

V    =    TX + Tz-.Y{Z-LX) 

=   fX + E, 

(8) 

(9) 

where E is a C x n matrix that charactcn/es CaJv ins interfer- 
ence. Note that the matrix T. which Bob knows, acts as a proxy 
transfer ttuitrix for T. which he doesn't know. 

Note that in (6). all terms other than )' are unknown. Further. 
it is non-linear due to the cross-product terms. TX and T/^yZ. 
In contrast. (^) is linear in the unknowns .V and E. The rest 
ot this work focuses 00 solving (9) under different assumptions 
on Calvin's streiiLMli 

VI. SUMMARY OF RESULTS 

We have three main results. Each result corresponds to a 
distributed, rate-optimal, polynomial-time algorithm that defeats 
an adversary of a particular type. The oplimality of these rates 
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has been proven by prior work [3|. |2M|, [I2|. Our work. 
however, provides a construction of distributed codes/algorithms 
that achieve optimal rales. In what follows, let |7| denote the 
number of receivers, and |£ denote the number of transmissions 
in the network. 

(1) Shared Secret Model: This model assumes that Alice and 
Bob have a very low rate secret channel, the transmissions on 
which are unknown to Calvin. It considers the transmission ot 
information \ia network coding in a network where Calvin can 
observe all transmissions, and can inject some corrupt packets 

Theorem I: The Shared Secret algorithm achieves a rate of 
C - zo with code-complexity 0(nC2). This is the maximum 
achievable rate 
In J(VII. we prove the above theorem by constructing an algo- 
rithm that achieves the bounds. Note that [7| proves a similar 
result lor a more constrained model where Alice shares 
low rate secret channel with all nodes in the network, and the 
operations performed by internal nodes are computationally ex- 
pensive. Further, their result guarantees cryptographic security, 
while we provide inlormation-theorctic security 

(2) Omniscient Adversary Model: This model assumes an 
omniscient adversary, i.e.. one from whom nothing is hidden. In 
particular. Alice and Bob have no shared secrets hidden from 
Calvin. It also assumes that the min-cut trom the advenai) 
to the destination. :,,. is less ihan (' '1. Prior work proves 
that without this condition, it is impossible for the source 
and the destination 10 reliably communicate withoui a secret 
channel [121. In >jVIII. we prove the following. 

Theorem 2: The Omniscient Adversary algorithm achieves 
a rate of C - '2zo with code-complexity CH(nf')3)- This is the 
maximum achievable rate. 

(3) Limited Adversary Model: In this model. Calvin is limited 
m his eavesdropping power; he can observe at most jfj transmit- 
ted packets. Exploiting this weakness ol the adversary results 
in an algorithm thai, like the Omniscient Adversary algorithm 

I w ithout a shared secret, but still achieves the higher rate 
possible via the Shared Secret algorithm. In particular, in $1X 
we prove the following. 

Theorem 3: If    z{   <   C - 2zo. the Limited Adversary 
algorithm achieves a rate of C - zo with axle-complexity 

i. This is the maximum achievable rate. 

vii. SHARED SECRET MODEL 

In the Shared Secret model. Alice and Bob have use of a 
strong resource, namely a secret channel over which Alice can 
transmit a small amount of information io Bob that is secret 
from Calvin. Note that since the internal IICKJCS mix corrupted 
and uncorrupted packets. Alice cannot just sign her packets 
and have Bob check the signature and throw away corrupted 
packets, in extreme cases this might lead to Bob not receiving 
any uncorrupted packets Alice uses the secret channel to send a 
hash of her information A' to Bob, which Bob can use to distill 
the corrupted packets he receives, as explained below. 

Shared Secret: Alice generates her secret message in two 
steps. She tirst ch<K>ses C purity symbols uniformly at random 
from the field ¥q. The parity symbols are labeled r,/, for d e 

.('}. Corresponding to the parity symbols, Alice's parity- 
ekeck matrix P is detined as the n ■ ( ' matrix whose {ij)tlt 

entry equals (r,)1, i.e.. r, to the i"' power. The second part of 
Mice's secret message is the l> ■ < ' hush matrix //. computed as 

the matrix product X P. We assume Alice communicates both 
the set of parity symbols and the hash matrix // to Bob over 
the secret channel. The combination o\ these two creates the 
shared secret, denoted §, between Alice and Bob. The ÜU <>i 
S is ( '(64 1) symbols, which is small in comparison to Alice's 
information A (The si/e ol A is I, ■ r>; it can be made arbitrarily 

ompared to the size of S by increasing the packet si/e 
n.) 

Mice's l-'.ncoder: Alice implements the rfttWCll random net- 
work encoder described in ;IV-B. 

Bob's Decoder: Not only is P used by Alice to generate //. 
but is also used by Bob in his decoding process. To be more 
precise. Bob computes YP - 77/ using the messages he gets 
from the network and the secret channel. We call the outcome 
the wnJrvme man 

By substituting the value of // and using (9). we obtain 

S = YP-TH =   Y -TX)P = EP. (10) 

Iluis. 11 no adversary was present, the packets would not be 
corrupted (i.e., E = 0) and S would be an all-zero matrix. As 
shown in §IV. X then equals t'xY. If Calvin injects corrupt 
packets. S will be a non-zero matrix 

Claim I: The rank ol /   is at most 
Claim 2: The columns of >' span the same vector-space as 

the columns of /. with probability at least 1 -Cncq~l. 
Claim I follows from the definition of E = TZ^Y{Z I X 
Claim 2 is proved in the Appendix. Together, they imply that 
Calvin's mierterence. / . can be written as linear combinations 
o\ the columns of at'- to suhniatrix >" of 5, i.e.. E = S'A, 
where A is a z0 • n matrix. This enables Bob to rewrite (9) as 
the matrix product 

Y = 
A 
.1 (ID 

Bob does not care about .1. but to obtain A', he must solve 
(II). Let \T\ and \£\ be the number of terminals and links m 
the underlying network. 

Claim 3: The matrix \T Tz^y}. and thus the matrix 
has full column-rank with probability at least 1 - |T||£|<7-1. 
Claim 3, proved in the Appendix, means that Bob can decode 
bv simply inverting the (' ■ (' matnx [f S'} and multiplying 
the result by )'. Thus, the shared secret algorithm achieves the 
rate of C~ zo -P/n. Here, the asymptotically negligible term 
62/n corresponds to the overhead due to the identity matrix 
Alice appends to A'. This rate is shown to be optimal by prior 
work [12]. The probability of error is at most the sums of the 
probabilities of error in Claims 2 and 3. i.e.. (ncC+ \T\\£\)q~x. 
Of OOde design, encoding and decoding, both encoding and 
decoding require 0(nC2) steps. The costliest step for Alice 
is the computation of the hash matrix //. and for Bob is the 
computation of the syndrome matnx S. 

The scheme presented above is universal, i.e.. the parameters 
of the code do not depend on any knowledge about zo% which in 
some sense functions as the ""noise parameter" of the network. 
Alice therefore has flexibility in tailoring her batch size to the 
size of the data which she wishes to transmit and the packet 
size allowed by the network. D 
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VIII. OMNIMIIM ADVERSARY MOI»I I 

What if WC lace an omniscient adversary, i.e.. Calvin can 
Observe everything, and there are no shared secrets between 
Alice and Bob? We dettgfl a network error-correcting code to 
defeat such a powerful adversary. Our algorithm achieves a rate 
of R - I Inch is lower than in the Shared Secret model. 
This is a direct consequence of Calvin's increased strength. 
Recent bounds |3| on network error-correcting codes show that 
m lact (' 2*o Ö lho maximum achievable rate for networks 
with BO omniscient BdvCBHB) 

Alice's EnciKler: Alice encodes in two steps. To coutner 
the adversary's interference, she first generates X by adding 
redundancy to her information. She ihen encodes V using the 
encoder defined in §IV-B. 

Alice adds redundancy as follows. Her original information 
is | length-(bn — Sn — b2) column vector Ü. (Here the fractional 
redundancy >). is dependent 00 :,.. the number of packets Calvin 
may inject into the network. i Alice converts U into X, a length- 

bn vector (Ü R IJ . where I is just the column version of 

the 6 x 6 identity matrix. It is generated by stacking columns 
of the identity matrix one after the other. The second term. R 
represents die redundancy Alice adds. The ratunJiincx vector 
R is a length-<Wi column vector generated by solving (fee matrix 
equation for R. 

■M 

D(Ü    R   I)    =0. 

where D is a Sn x bn matrix defined as the redundancy matrix. 
D is obtained by choosing each element as an independent 
and uniformly random symbol from the finite field ¥,,. Due 
to the dependence of l> on & and thus on :■,,. the Onmisucnt 
Adversary algorithm is not universal. The redundancy matrix D 
is known to (;// panics - Alice. Bob. and Calvin - and hence 
does not constiuuc | shared secret. 

Alice then proceed! to the standard network encoding. She 
rearranges X. a length-/»// vector, into the h > n matrix A'. The 

umn oi Y consists of symbols from the ((j - 1)6+ l)th 

through {jb)"' symbols of X. From this point on. Alice's 
encoder implements the classical random network encoder de- 
scribed in MV-B. to generate her transmitted packets 

Bob's Decoder: As shown in <l;>. Bob's received data is related 
to Mice Bad Calvin's transmitted data as ) I \ -f E. Bob's 
Objective, U in >jVII. is to distil] out the effect of the error matrix 
E and recover the vector X. He can then retrieve Mice's data 
by extracting the first (bn - b2 - Sn) symbols to obtain Ü. 

To decode. Bob performs the following steps, each of which 
corresponds to an elementary matrix operation. 

• I), untuning Calvin's strength: Bob first determines the 
strength of the adversary :,,. which is the column rank of 
Tz—Y Bob does not know '7>_y, but since I and Tz—Y 
span disjoint \ectoi spaces (Claim 3). the column rank ol Y 
is equal to the sum of the column ranks of / and Tg-+y. 
Since the column rank of T is simply the batch size b. Bob 
determines -.,, h\ subtracting b from the column rank of the 
matrix Y. 

• Discarding irrelevant information: Since the classical ran- 
dom network code is run without any central coordinating 
authority,  the  packets of information  that  Bob  receives 

may be highly redundant. Of the packets Bob receives, he 
selectively discards some so that the resulting matrix Y has 
b + zo rows, and has full row rank. For him to consider 
more packets is useless, since at most >> ■ .,, packets of 
information have been injected into the network, 6 from 
Mice and :, trom Calvin. This operation has the additional 
benefit of reducing the complexity of linear operations 
that Bob needs to perform henceforth. This reduces the 
dimensions o\ the matrix 7". since Boh can discard the rows 
corresponding to the discarded packets. 
Estimating a "basis" for E: If Bob could directly estimate 
a basis for the column space of /:'. then he could simply 
decode as in the Shared Secret algorithm. However, there is 
no shared secret that enables him to discover a basis for the 
column space ol / So, he instead chooses | r>ro.\\ error 
matrix T" whose columns (which arc. in general, linear 
combinaiions of columns of both X and /.) act as a proxy- 
error basis for columns of E. This is analogous to step (9). 
where the matrix f acts as a proxy transter matrix for the 
unknown matnx T. 
The matrix T" is obtained as follows. Bob sekv 
columns from >' such that these columns, together with the 
B columns of 7 . form a basis for the columns of V. Without 
loss of generality, these columns correspond to the first zo 
columns of V til not. Bob simply permutes the columns of 
Y to make it so). The (6 + zo) x zo matrix corresponding 
to these first .,, columns is denoted T". 
Changing to ptv.xy basis: Bob rewrites V in the basis 
corresponding to the columns of the (6 + to) * (6 + z0) 
matrix \T" T\. Therefore Y can now be written as 

/        Fz     0 Y = IT" t] 
i) 

(12) 

Here 
Fz 

is defined as the (6 + z0) x (n - (6 + zo)) 

matrix"representation of the columns of Y (other than those 
in \T" t\) in the new basis, with E7 and Es defined as 
the sub-matrices of appropriate dimensions 

Bob splits A' as X = [X\ X2 X3], where A', corresponds to 
the first ZQ columns of \, A'3 to the last b columns of X, 
and \\. to the remaining columns of A'. We perform linear 
algebraic manipulations on < 12). to reduce it to a form in which 
the variables in X are related by a linear transform solely to 
quantities that are computable by Bob. Claim 4 summarizes 
the effect of these linear algebraic manipulations (proof in 
Appendix). 

Claim 4: The matrix equation (12) is exactly equivalent to 
the matrix equation f X2 = f (Ex + Xt E

z). 
To complete the proof of correctness of our algorithm, we need 
onlv the following claim, proved in the Appendix. 

Claim 5: For Sn > n(zo + e). with probability greater than 
1 -q~ru, the System Of linear equations 

tX2    =   t (Fx+XlF
z) (13) 

DX    =   0 (14) 

is solvable for X 
The final claim enables Bob to recover A. which contains 
Alice's information at asymptotic rate R = ( Hiere is 
an asymptotically negligible rate overhead equalling b2fn + c. 
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The bP/n term corresponds, as before, to the identity matrix 
appended to A'. The term * takes any positive value, and the 
probability of error also depends on it.) The probability of error 
equals the sums of the probabilities of error in Claims 3 and 5, 
i.e., |T||£|<7-1 +</ Ol Cttk design, encoding and decoding. 
the most computationally expensive il decoding. The costliest 
step involves inverting the linear transform corresponding to 
(13HI4), which is of dimension 0{nC). □ 

IX. LIMITED ADVERSARY MODEL 

We combine the strengths of the Shared Secret algorithm 
and the Omniscient Adversary algorithm, to achieve the higher 
rate of C - C - ZQ, without needing a secret channel The 
caveat is that Caivin's strength is more limited: the number of 
packets he can transmit, zo. and the number he can eavesdrop 
on. zi. satisfy the technical constraint 

2zo + zj < C. (15) 

We call such an adversary a limited Adversary. 

The main idea underlying our Limited Adversary algorithm 
is simple. Alice uses (he Omniscient Adversary algorithm to 
transmit a "short*' message to Bob at rate C - 2zo- By (15), 
Z[ < C-2zo, the rate zj at which Calvin eavesdrops is stnctl> 
less than Alice's rate ol transmission ( ' 2;,,. Hence Calvin 
cannot decode Alice's message, but Bob can. This means Alice's 
message to Bob is secret from Calvin. Alice then builds upon 
this secret, using the Shared Secret algorithm to transmit the 
hulk of her message to Boh at the higher rate C - zr>- 

Though the following algorithm requires Alice to know ZQ 

and zi, we describe in |DC-A how to change the algorithm to 
make it independent of these parameters. The price we pay is 
a slight decrease m rate. 

Mice's Encoder: Alice's encoder follows essentially the schema 
described above, except for a technicality - the information she 
transmits to Bob via the Omniscient Adversary algonthm is 
padded with some random symbols. This is for two reasons. 
firstly, since the Omniscient Adversary algorithm has a prob- 
ability of error that decays exponentially with the si/e o\ the 
input, it isn't guaranteed to perform well to transmit nisi a small 
message. Secondly, the randomness m the padded symbols also 
ensures strong information theoretic secrecy of the small secret 

ge, i.e.. we can then show tin Claim 6) that Calvin's best 
estimate of any function of the secret information is no better 
than if he made random guesses 

Alice's information .V decomposes into two parts [A 
She uses the information she wishes to transmit to Bob, at rate 
R = C - zo - A. as input to the encoder of the Shared Secret 
algorithm, thereby generating the b x n(l - A) sub-matrix A 
Here A is a parameter that enables Alice to trade off between 
the the probability of error and rate-loss 

The second sub-matrix. AY. which we call the leerecy matrix 
is analogous to the secret S used in the Secret Sharing algorithm 
desenbed in §Vll The size of X2 is 6 x An. In fact, A is en 
encoding of the secret S Alice generates in the Shared Secret 
algorithm. The 6(0 -+- 1) symbols corresponding to the parity 
symbols {r<t} and the hash matrix // are written in the form 
of a lengm-fj(<Y + 1) column vector. This vector is appended 
with symbols chosen uniformly at random from Fq to result in 
the length-(C - zo - 6)An vector Ü'. This vector Ü' could 

function as the input Ü to the Omniscient Adversary algorithm 
operated over a packet -size An, with a probability of decoding 
cnoi ihat is exponentially small in An: however, we actually 
use a hash of U' to generate the input Ü to the Omniscient 
Adversary algorithm. To be more precise. Ü = \ Ü', where 
\ is any square MDS code generator matrix ' of dimension 
[C - Zo- <$)An. known jo all parties Alice, Bob, and Calvin. 
\s we see later, hashing Ü' with I strengthen the secrecy of S 

land enables the proof of Claim 6 below). Alice then uses the 
encoder lor the Omniscient Adversary algorithm to generate AY 
from Ü. 

The two components o!  A .ind AY. respectively 
corres|xind to the information Alice wishes to transmit to Bob. 
and an implementation ot the low rate secret channel. The 
traction of the packet-si/e corresponding to AY is "small". 
i.e.. A. Finally. Alice implements the classical random encoder 
described in §IV-B. 

Bob's Encoder: Bob arranges his received packets into the ma- 
trix ) ) ■ )Y. The sub-matrices Y\ and )'■> are respectively 
the network transforms of A'i and X2. 

Bob decodes in two steps. Bob first decodes Y'2 to obtain S. 
He begins by using the Omniscient Adversary decoder to obtain 
the \ector U. He obtains Ü' from Ü, by multiplying by V~l. 
He then extracts from Ü' (he b(C + 1) symbols corresponding 
to S. The following claim, proved in the Appendix, ensures that 
S is indeed secret from Calvin. 

Claim 6: The probability that Calvin guesses S correctly is 
.11 most </-''<c+,). i.e.. S is inlonnation-thcoreiically secret horn 
Calvin. 
Thus Alice has now shared S with Bob. Bob uses S as the 
side information used by the decoder ol the Shared Secret 
algorithm to decode )\. This enables him to recover X\t which 
contains Alice's information at rate R = C - zo- (There is 
an asymptotically negligible rate overhead equalling b2 

The b2/n term corresponds, as before, 10 the identity matrix 
appended to V. The term A takes any positive value, and the 
probability of error also depends on it.) The probability of error 
equal! the sums of the probabilities o! error in Theorems I 
and 2. The errors in Theorem I are analyzed in Claims 3 and 2. 
Theorem 2 is used to generate codes ot blocklength An. This 
probability of error is unalv/ed in Claim 5. Together, an upper 
bound on the probability of error is {\T\\£\+ncC)q-X +q~*1". 
Since the Limited Adversary algorithm is essentially a con- 
catenation of the Shared Secret algorithm with the Omniscient 
\d\eis.iiy algorithm, the computational cost is the sum of the 

computational costs of the two (with A/i replacing n as the 
block-length for the Shared Secret algorithm). This quantity 
therefore equals ö{nC2 + (AnC)3). Choosing A appropriately 
(say A     [C   Jn~i) makes the second term vanish. D 

A  Limited Adversary: Universal Codes 

We now discuss how to convert the above algorithm to 
be independent of the network parameters ,, and zj. Alice's 
challenge is to design for all possible .,, and ./ pairs that satisfy 
the constraint (15). For any specific /. Alice needs to worry 
only about the largest to that sat 1 sties (15) because what works 

1 Secret Sharing protocols |25| demonstrate that usinc MDS codegenerator 
nutria's guarantees thai to inter e\en a single symhol of Ü' from Ü requires 
the entire vector Ü. 
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Adversarial 
Strength 

Rate Complexity 1 

Shared 
1 Secret 

zo < C, 
zi = network 

G - zo 0(nC) 

Omniscient zo < C/2, 
zt = network 

C-2zo o((ncy) 

1 Limited zi+2zo <C C - zo 0(nCJ) 

I Mil I III—Comparison of our three algorithms 

against an attacker with a particular traffic injection strength 
works against all weaker attackers. Note that (', to* m\\i 
all integers, and thus there are only C — 1 such attackers. For 
each of ÜMM niackers. Alice designs a dil'lerent secrecy matrix 
A j as described above. She appends these C 1 matrices to her 
information A ; and sends the result as described in the above 
section. 

To decode Bob needs to estimate which secrecy matrix to 
use, i.e., which one of them is secret from the attacker For 
this he needs a good upper hound on 90. But. just as in the 
omniscient adversary algorithm, he can obtain this by computing 
die column rank of V. and subtracting b from it. He then decodes 
using the secrecy matrix corresponding to (zo,C - 1 - 2zo). 
Uns secrecy matrix suffices since :/ can at most be C— 1—2*0, 
which corresponds to Cabin's highest eavesdropping strength 
for this D 

X. CONCLUSION 

Random network codes are vulnerable to Byzantine adver- 
sities This work makes them secure. We provide algorithms2 

which are information-theoretically secure and rate-optimal for 
different adversarial strengths as shown in Table I. When the 
adversary is omniscient, we show how to achieve a rate of 
C - 2ZQ. where c<> is the number of packets the adversary 
injects and C is the network capacity. If the adversary cannot 
observe everything, our algorithms achieve a higher rate. C-z(). 
Both rates are optimal. Further our algorithms arc practical; they 
are distributed, have polynomial-time complexity and require no 
changes at the internal nodes. 
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APPENDIX 
A. Proof of Claim 2 

The idea behind the claim is as follows Hie parity-check maim /' 

is, by construction, a Ymulcrmondc matrix [271. and therefore has 
full column rank. Further, since /' is hidden from Calvin, uiih hiah 
probability he cannot choose interference such that ihe matrix product 
/ /' has a lower column rank than dix-s / 

To prove this we use a t:enerali/aiion of an argument used in [12]. 
denote the 11,J   eletiK-nt of S = EP. We note that tm each 

{is j). S«j can be thought of as a polynomial in r, with eoeliicienis 

from the /"  row ot /    Situe S     has deszree at mosi n in -  . at most 
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it values oi I    satisfy the equation s i. tor any scalar c 6 F,. 
Since Cahin docs not know the values of the r I. the probability he 
can choose entries in / to satisfy any such equation is at most nq ! 

In particular, the probability that the tirst row of S consists ot 
the length4 ' zero vcclot is ai must [nq ' '■■' For | patticulai choice 
ot the first row ot >'. the probability that the second row is linearly 
dependent on the lirsi iow Me . is any scalar multiple of the hrst row i 
is at most nc lqc   '   Similarly, the probability that the third row is 
iaj ot iiu- a BOMfbk Haw combinations "t the lust two iowi is at 
most a I   .winning thus, the probability that the /"' KM ot 
s is lineally dependent on the previous / - 1 is at most nc/qc~ "l. 
Taking the union bound o\er all ( ' events, the probability that S is 
singular is at most r»r^^l, 1/<7C~'41- Since the largest summand 
MMb u' ,'<J. thereloie the probability oi the undesirable event is at 

• ' fl   !   Hence, with probability at least 1 - Cn( q 
S are related via an mvertible iratisioniiation  Noli di.u a is | design 
paiameiei and (.an Iv chosen to be much larger than ('//   to make the 
piobability of error arbitrarily small d 

B. Proof of Claim 3 

The proof ot Claim > follows directly from [9] Essentially, it is a 
consequence of the following tacts First, due to [9], with probability 
M least i I -\T\<j ' | ' o\cr netwoik code design. [7' TZ—Y] 

n-ls ball 
column tank Here |T| M the number of temiinals in the multicast 
connection, and \i'\ is the numbct of (hyper) links in the underlying 
network Secondly, the matrix I S'} can be obtained via an invertible 
iiansiomiation from the matrix [7" Tz-.y\- Lastly, for large enough q. 
the quantity I 1 - \J\q   ')■''" is strictly greater than 1 - \T\\i' 

C. Proof of Claim 4 

Rewriting the nght hand ride ot i 12) and subsuming lor Y from (8) 
results in 

tX -I-Tz~,   /     I \) = f\0 F* h] + r"[/.<, Fz 0].     (16) 

Since the columns ot / " arc spanned by the columns of ' / 
therefore we may write T" as 1 \1< whete the matrices 
A/i and A/2 represent the appropriate basis tianstomiaiion Tlius (ItSi 
Ivounes 

fX+TZ-*Y(Z-LX) = 

f ([0 F* /,,]) + (fMi+TM-YMt) [/.„ Fz 01. (17) 

Since the vector spaces spanned by the columns ot  /  and I 
disjoint «except in the zero vectoi i. therefore we may compare the term 
multiplying the matrix  /  on both sides of 17 (we DJB] also compare 
the term corresponding to Tg .\ . but this gives us nothing useful) 
Ibis comparison gives us the equation 

(IX) 

remaining columns of D. Define o = n - (6+ z0). Denote by / ■ 
the vector formed by stacking columns of the matrix /'v one alter the 
other, and by ntry of the matrix Fz. The system ot 
linear equations (I >)•( 14) can Iv written in matrix form as 

tX = 7(0 Fx /h] + 'n/,[/:„ Fz 0). 

-(fcMSS) 
where   I is given by 

-fx.xt -h.a -  -/. 7 
t) 

0 
T 0 

I) 

0 

-fad -f 0 f 0 0 

-hJ- -jLf   '. ■       -/*<;,,oT 0 0 
0 
0 0 

0 
f 

We split the matrix equation (lb) into three parts, corresponding to the   q'"'. Recall that b = C — Zo. 
sub matrices \',. \ . ami A ; i >t  V   Thus (IS) now spins into the three 
equations 

/ \M 

Dl 

This matrix I is described by smaller dimensional main 
entries Hie matrix / has dimensions \h + zo) * b. The jth row 
ot matrices in the lop portion of matrix \ describes an equation 
corresponding to the /'' column Of the matrix equation in Equation 13 
The bottom portion ot 1 corres|>onds to Equation 14. Bob can recover 
the variables X(iJ) if and only if the above matrix I has lull column 
rank We now analv/e I to show that this is indeed the case (with high 
probability) for sufficiently large Sn, I sing Claim ), we can assume 
that / has lull column rank, and ihereloie the last 00 columns of the 
matrix (represented bv the right side of   \) have full column tank 

We now address the left columns ot 1 Consider performing 
column operations from right to left to zero out the Ts in the left 
side of the top rows of I 'that is. to zero out the upper left sub-matrix 
ot \i \ has full column rank ilT after this process the lower left sub 
matnx ot I has full column rank We show that this is the case with 
high probability over the random elements of D (when on is chosen to 
fat sufficiently large). Let /, ,s be the values appearing in the uppei left 
sub-matrix d 1 We show that lor any (adversarial) choice of /,/s, 
with high probability, the act of zeroing out the / s vields I lower left 
sub-matrix of A with full column rank Then using the union bound 
on all possible values of /:, we obtain our assertion. 

For any fixed values of f%J, let C(j). for j = 1 to bz0. denote 
the columns of the lower left sub-matnx of .4 after zeroing out the 
7's. For each j, the vector C(J) is a linear combination of the (lowei 
pan of the) / ' column of A with columns from the lower nght sub 
matrix ot   \   As the entries of D\ are independent random variables 
uniformly distributed in F,,. the columns i =  1 bzo 
consist ot independent entries that are also umtoiiiiK distributed in -, 
Standard analysis shows that the probability that the colic 
not independent is ^">-'$n. For the union bound we would like this 
probability to be at most q  •*'">   "E "'. Thus, it 
suffices to take On = n(zo + e) for an error probability of at most 

TXa    =    TF' 

; \    =   i 
+ TMiFz, and 

(19) 

(20) 

(21) 

liquation (21) is trivial, since it only reiterates that A | equals columns 
oi an identity matrix. Equation (19) allows us to estimate that A/. 
equals AY We are finally left with (20), which by substituting fa  V 
from (19) reduces to 

tX* « f ( \   ! ;) (22) 

D 

D. Proof of Claim 5 

For i = 1.2. we denote by X, the vector obtained by stackirn.- the 
columns of A\ one after the other Let I) - \D\ D2]. where /). 
corresponds to the last lr columns o\ l> and D\ corresponds to the 

/    I'n.ot <>t Claim 6 

The vector (! was generated from Ü' via an MDS code generator 

matrix (see Footnote 1). and a folklore result about network codes 

is that with high probability over random netwoik code design the 

linear traiisloim between Alice and Calvin also has the MDS property 

Thus, for Calvin to infer even a single symbol of the lengU 

to — 6)n\ vector Ü'. he needs to have received at least (C - zo - 

5)rtA linear combinations o\ the variables m the secrecy matrix A. 

Since Calvin can overhear ;/ packets, he has n A equations 

that are linear in the unknown variables The difference between the 

number Of variables unknown to Calvin, and the number of equations 

Calvin has. is linear in ;iA - for large enough nA. this difference is 

larger than b(C + 1). the length of the vectoi :' Hv a direct extension 

of [25], Calvins probabilitv of uuessing anv function of S correcüy is 
n 
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Random Linear Network Coding: 
A free cipher? 

Lufsa Lima        Muriel Medard        Joäo Barros 

Abstract—Wc consider the level of information security pro- 
vided by random linear network coding in network scenarios in 
which all nodes comply with the communication protocols yet are 
assumed to he potential eavesdroppers (i.e. "nice but curious"). 
For this setup, which differs from wiretapping scenarios consid- 
ered previously, we develop a natural algebraic security criterion, 
and pro\e several of its key properties. A preliminary analysis 
of the impact of network topology on the overall network coding 
security, in particular for complete directed acyclic graphs, is 
also included. 

Index Terms—security, information theory, graph theory, net- 
work coding. 

I. INTRODUCTION 

Under the classical networking paradigm, in which inter- 
mediate nodes are only allowed lo store and forward packets. 
information security is usually viewed as an independent 
feature with little or no relation to other communication tasks 
In fact, since intermediate nodes receive exact copies of the 
sent packets, data confidentiality is commonly ensured by 
cryptographic means at higher layers of the protocol stack. 
Breaking with the ruling paradigm, network coding allows 
intermediate nodes to mix information from different data 
flows |1], [21 and thus provides an intrinsic level of data 
security — arguably one of the least well understood benefits 
of network coding. 

Previous work on this issue has been mostly concerned 
with constructing codes capable of spliting the data among 
different links, such that reconstruction by a wiretapper is 
either very difficult or Impossible. In [31. the authors present 
a secure linear network code that achieves perfect secrecy 
against an attacker with access to a limited number of links. 
A similar problem is considered in [4], featuring a random 
coding approach in which only the input vector is modi- 
fied. [5J introduces a different information-theoretic security 
model, in which a system is deemed to be secure if an 
eavesdropper is unable to get any decoded or decodable (also 
called meaningful) source data. Still focusing on wiretapping 
attacks. |6| provides a simple security protocol exploiting the 
network topology: an attacker is shown to be unable lo get any 

I I im.i (luisalima@ieee.org > and J. Barros (barros@dcc.fc.up.pt) are with 
the Institute de Telecomunicacöcs (Hi and the Department of Computer 
Science. Faculdade de Cicncias da I'niversidade do Porto. Portugal. M. 
Mddard (medardC* mit.edu i is with the Laboratory tor Information and De- 
cision Systems at the Massachusetts Institute of Technology This work was 
partly supported by the Fundacao para a Ciencia e Tecnologia (Portuguese 
foundation lor Science and Technology) under grant SFRH/BD/24718/2005 
and by AFOSR under grant "Robust Self-Authenticating Network Coding" 
AFOSR 000106. Part of this work was done while the first author 
visiting student at the Laboratory for Information and Decision System at 

^achusetts Institute of Technology. 

Fig. I. Canonical Network Coding Example. In this image, intermediate nodes 
are represented with squares. With this code, node 4 is a vulnerability for 
the network since it can decode all the information sent through it. Note 
that the complete opposite happens for node 5. that receives no meaningful 
information whatsoever 

meaningful information unless it can access those links that 
are necessary for the communication between the legitimate 
sender and the receiver, who are assumed to be using network 
coding. As a distributed capacity-achieving approach for the 
multicast case, randomized network coding [7], [8] has been 
shown to extend naturally to packet networks with losses [91 
and Byzantine modifications (both detection and correction 
11U|. (I II. [12], [13]). [14] adds a cost criterion to the secure 
network coding problem, providing heuristic solutions for a 
coding scheme that minimizes both the network cost and 
the probability that the wiretapper is able to retrieve all the 
messages of interest. 

In this work, we approach network coding security from 
a different angle: our focus is nut on the threat posed by 
external wiretappers but on the more general threat posed 
by intermediate nodes. We assume that the network consists 
entirely of "nice but curious" nodes, i.e. they comply with 
the communication protocols (in that sense, they are well- 
behaved) but may try to acquire as much information as 
possible from the data that passes through them (in which case. 
they are potentially malicious). This notion is highlighted in 
the following example. 

Example I: Consider the canonical network coding exam- 
ple with 7 nodes, shown in Figure /. Node 1 sends a flow 
to sinks 6 and 7 through intermediate nodes 2, 3, 4 and 5. 
From the point of security, we can distinguish between three 
types of intermediate nodes in this setting: (I) those that only 
get a non-meaningful pan of the information, such as node 
5; (2) those that obtain all of the information, such as node 
4; and (3) those that get partial yet meaningful information, 
such as nodes 2 and 3. Although this network code could be 
considered .secure against single-edge external wiretapping — 
i.e., the wiretapper is not able to retrieve the whole data simply 



by eavesdropping on a single edge — ii is clearly insecure 
against internal eavesdropping by an Intermediate node. 

Motivated by this example, we set out to investigate the 
security potential of network coding. Our main contributions 
arc as follows: 

• Problem Formulation. We formulate a secure network 
coding problem, in which all intermediate nodes are 
viewed as potential eavesdroppers and the goal is to 
characterize the intrinsie level of securilv provided by 
random linear network coding. 

• Algebraic Security Criterion: Based on the notion that the 
number of deeodablc bits available to each intermediate 
node is limited by the decrees of freedom it receives, we 
are able to provide a natural secrecy constraint for net- 
work coding and to prove some of its most fundamental 
properties. 

• Security Analysis for Complete Directed Acyclic Graphs: 
As a preliminary step towards understanding the interplay 
between network topology and security against eaves- 
dropping nodes, we present a rigorous characterization 
of the achievable level of algebraic security tor this class 
of complete graphs. 

The remainder ot this paper is organi/ed as follows. First, a 
formal problem statement is in Section II. followed by a de- 
tailed analysis of the algebraic security of Randomized Linear 
Network Coding in Section III. In Section IV. this analysis is 
carried out specifically for complete directed acyclic graphs, 
flic paper concludes with Section V. 

II. PROBLEM SETUP 

We adopt the network model o\ (2): we represent the 
network as an acyclic directed graph G = (V.E), where 
\ is the set of nodes and E is the set of edges. Edges 
are denoted by round brackets >, (v.r') £ E. in which 
v = head(r) and vt ■ tail(< ). The set of edges that end at a 
vertex t' € Vr is denoted by I/(t;) = {e e E : head(e) = v}, 
and the m-degrec of tho vertex is 6[(v) = |r/(v)|: similarly 
the set of edges originating at a vertex v € V is denoted 
by Fo(v) = {e € / tail < | - r}. the out-degree being 
represented by 6o{v) = \ro{v)\. 

Discrete random processes V . A K are observable at one 
or more source nodes, lb simplify the analysis, we shall 
consider that each network link is free of delays and thai 
there arc no losses. Moreover, the capacity of each link is 
one bit per unit time, and the random processes X{ have a 
constant entropy rate of one bit per unit time. Edges with 
larger capacities are modelled as parallel edges and sources 
of larger entropy rate arc modelled as multiple sources at the 
same node. We shall consider multicast connections as it is 
the most general type of single connection: there arc d > 1 
receiver nodes. The objective ifl 10 transmit all the source 
pros esses to each of the receiver nodes. 

In linear network coding, edge e. = (v,u) carries the process 
which is defined below: 

l:\i generated at v e':head(e')=tail(e) 

The transfer matrix M describes the relationship between 
an input vector x and an output vector £ | r.M. M = 
A(I - F)~] H!. where A and B represent, respectively, the 
linear mixings of the input vector and of the output vector, and 
have sizes K x \E\ and v x \E\. F is the adjacency matrix 
of the directed labelled line graph corresponding to the graph 
G. In this paper we shall not consider matrix li. which only 
refers to the decoding at the receivers. Thus, wc shall mainly 
analyse pans o\ the matrix .W,'. such that (>' = (I - F)"1; 

denote column I of A and AG. respectively. We 
dehne [he partial transfer matrix Mfc im% (also called auxiliary 
encoding vector |9|) as the observable matrix at a given node 
f, i.e. the observed matrix formed by the symbols received at 
a node r. This is equivalent to the fraction of the data that an 
intermediate node has access to in a multicast transmission. 

Regarding the coding scheme, we consider the random 
linear network coding scheme introduced in [7]: and thus 
each coefficient of the matrices described above is chosen 
independently and uniformly over all elements of a finite field 
F,, q = 2m. 

Our goal is to evaluate the intrinsic security of random 
linear network coding, in multicast scenarios where all the 
intermediate nodes in the network arc potentially malicious 
eavesdroppers. Specifically our threat model assumes that 
intermediate nodes perform the coding operations as outlined 
above, and will try to decode as much data as possible. 

III. ALGEBRAIC SECURITY OF RANDOM LINEAR 

NETWORK CODING 

A. Algebrau  \r<uritx 

The Shannon criterion for information-theoretic leCD- 
rity 115] corresponds in general terms to a zero mutual 
information between the cypher-text ((') and the original 
message (A/), i.e. l(M:C) = 0. This condition implies that 
an attacker must guess < IHM) symbols to be able to 
compromise the data. With network coding, on the other hand, 
if the attacker is capable o\ guessing \l symbols, /\ - M 
additional observed symbols arc required for decoding — by 
noting that each received symbol is a linear combination of 
the K message symbols from the source, we can see that I 
receiver must receiv e A coded symbols in order to recover one 
message symbol. Thus, as will be shown later, restricted rank 
sets of individual symbols do not translate into immediately 
deeodablc data with high probability. This notion is illustrated 
in Figure 2. In the scheme shown on top. each intermediate 
node can recover half of the transmitted symbols, whereas in 
the bottom scheme none of the nodes can recover any portion 
of the sent data. 

Definition I {Algebraic Security Criterion): The level o\ 
security provided by random linear network coding is mea- 
sured by the number of symbols that an intermediate node r 
has to guess in order to decode one of the transmitted symbols. 
From a formal point of view. 

As(«) = 
A'-(rank(:\/;.;(v))-f/d 



Fig. 2 hxample of algebraic security In the upper scheme data is run 
protected, whereas m itie lower scheme nodes 2 and J are unable to recover 
any data symbols 

where Id represents the number of partially diagonalizable 
linos of the matrix (i.e. the number of message symbols thai 
can be recovered by Gaussian elimination). 

Notice that the previous definition is eijuivaleni to comput- 
ing the difference between the global rank of the code and 
the local rank in each intermediate node 0. Moreover, as more 
and more symbols become compromised of security criteria, 
the level of security tends to 0. since as we shall show in 
this section, with high probability the number of individually 
decodable symbols /, L'OCS to /ero as the si/e of the Held goes 
to infinity. 

B. Security Characteriratmn 

We are now ready to solve the problem of characterizing 
the algebraic security of random linear network anling. The 
key to our proofs is to analy/e the properties of the partial 
transfer matrix at each intermediate node. Recall lhai there are 
two cases in which the intermediate node can gain access to 
relevant information: (1) when the partial transfer matrix has 
full rank and (2) when the partial transfer matrix has diagonal- 
izable pans. Thus, we shall carry out independent analyzes in 
terms of rank and in terms of partially diagonalizablc matrices. 
The following lemmas will be useful. 

Lemma I:  In the random linear network coding scheme, 

P{AS > 0) < P{3v: 6r{v) > K). 

Proof:   See the Appendix. ■ 
It follows from this lemma that it is only necessary to consider 
I he eise in which I\ < 6j(v). 

Lemma 2: The probability that a linear combination of 
independent and uniformly distributed values in ¥,, yields the 
zero result is bounded by 

P(Xltn = 0)<_?i±^l, 
Q 

where h{q) is a function such that 0(h(q)) < 0{q2). More- 
over, P{Xun - 0) lends to 0 when q —» 00. 

Proof:   See the Appendi \. ■ 
Lemma J: The probability of obtaining jy zeros in one line 

of the £ x £ transfer matrix M is bounded by 

Proof:   See the Appendix. ■ 
Theorem /.  Lei /'(/,/ > 0) be the probability of recovering 

a strictly positive number of symbols /,/ at ihe intermediate 
nodes with 6i(v) < K — 1 by Gaussian elimination. Then. 
P{ld > 0) — 0 with q -» 00 and K 

Proof:   Let A/' be the transpose of the partial transfer 
matrix ai some vertex  c A/'        \/( We consider the 
process of Gaussian elimination ai A/'. It is unnecessary 
to consider rank A . since in that case the matrix, w.h.p. 
is mvertible and hence diagonal izablc |8|. Thus, hi* is a 
6j(v) x A' matrix. 6j(v) < hi. 

We prove the theorem constructively by analysing the 
probability of having A 1 zeros in one or more lines of 
M'. Let p be the probability of having /\' - 1 zeros in a 
line of A/', and let A' be a random variable representing the 
recoverable number of symbols when an intermediate node- 
has \       decrees oJ freedom. It follows from Lemma 3 that 

-Cr-0Pr")'(- %l + h(q)\ 
K-\ 

r    / \        r 
In the base case with Sj{u) = L at most X = 1 symbols on 

be recovered, since iherc are not enough degrees of freedom 
lo perform Gaussian elimination and the only chance for 
recovering a symbol is that the line of the matrix M already 
has A - 1 zeros. The probability for this is p. 

In the case that 1 < Si(v) < A. we can obtain directly a 
number I = /of lines with A- 1 zeros, and a number (5/(v)—/ 
Of lines in the opposite situation. Since we have Sj(v) degrees 
of freedom to perform Gaussian elimination, we can obtain at 
most 6j(v) symbols by successive elimination. At each step 
the probability of obtaining a line with A - 1 zeros is bounded 

By analysing the different possibilities of combinations for 
the lines that already have K — 1 zeros and the ones that can 
be obtained by Gaussian elimination, we get 

p(x = x)<± (s'\v))p'o - ri*«-i/Kjr = x) 
/=o v ' 

-)^(I_^^))P'-4'("')+'o-p)M',",-2,-^ 
where P,(X = x) represents P{X = x\L = I). 

Approximating the binomial distribution by a normal distri- 
bution yields 

Pi{X - x)« 
y/2*{6i{v)-l)v(\-pY 

where 

c'   un(   i (*-(*/(»)-OP)
2
 \ 

Since p-* p* < 1. we can state that, when q — oo and p-* 0 
is RS exp(x2). When A' goes to oo, so does x. and hence 

expCx2),..«, 

and 

0, 

Pi{X=K- l),-oo.K-oo - 0. 



Since 
K-l 

P<X = K-l) = £ (Sl{"))jf(l-p)s'lv)--lPt{X = K-\). 

and Pi(X   =  K - 1) decreases exponentially, and / only 
increases linearly. 

P \      K -l)^o,^o 0. 

The probability of obtaining X K - 1 symbols is bounded 
by I'(X = K - 1); it follows thai the probability of decoding 
V symbols with any 5j(v) < K goes to zero as q and A' tend 

to infinity. ■ 

IV. ALGEBRAIC SECURITY OF THE COMPLETE GRAPH 

Notiee that, in eonsequence of the property outlined in 
Lemma I, the algebraic security of a graph is topology 
dependent. A nods with A'/(r) > A will not neeess.irilv 
ItoehrC I lull-rank partial transfer matrix. The rank depends 
on the available paths between sources and each intermediate 
node. More specifically, depending on the topology of the 
graph, some nodes may receive only combinations ol symbols 
derived from matrices with restricted rank, i.e. less than A. 
This includes, for example, trees, where a node connected 
dircctlv to the source by a link of capacity (' can only have 
children that receive at most rank ( 

A» .i tust step KOWSfdl general network models, we consider 
the case ol complete acyclic directed graphs G = (Vt£), 
n = \V\. which can be generated as follows. 

• Generate random labels lor the n vertices. These have 
some ordering (ei,0a („} associated to them: 

• Make an outgoing (directed) edge from the vertex with 
the minimum label to every vertex with a higher label. 

• Continue until we reach a vertex where there are DO more 
possibilities for connections. 

This algorithm generates a complete acyclic directed graph 
with one source, one sink and \E\ = tiiti L)/2 edges, 
since the total degree of each vertex is n - 1 = 6j{v) -f 

i. The source and the sink are naturally determined .is 
those nodes that have only outgoing edges or only incoming 
edges, respectively. The ordering ensures that this algorithm 
always generates an acyclic directed graph, conferring the 
graphs generated in this way specific properties such as the 
distribution of the m and out-degrecs. These properties can be 
determined directly from the order of the vertex using 6o(v) = 
n - order(v) and Sj(v) = n - 6o(v) — 1 = order(r) - 1. 

Before proving our next theorem, we introduce the follow- 
ing lemmas. 

Lemma 4: In complete acyclic directed graphs, n node that 
receives R symbols, receives u.h.p. a partial transfer matrix 
with rank equal to min(/f\ A ). 

Proof:   See the Appendix. ■ 
Lemma 5: For the complete directed acyclic graph, w.h.p., 

in A. order(t')) 
As(») = 

Proof:  See the Appendix. 

K 

Theorem 2: Let o.s  be the secure max-flow, defiiu 
the maximum number of symbols that may be secured in 
a transmission by using random linear network coding. For 
a complete acyclic directed graph with n nixies, the 
max-Ilow equals the max-flow min-cut capacity of the network 
and is 7i — 1. Conversely, the minimum numbers of required 
symbols for secured transmission is n - 1 symbols. 

Proof: 
Suppose, by contradiction, that A' = n - 1 is the max- 

Ilow nun-cut c;ipacitv of the complete directed acyclic graph. 
The maximum order of an intermediate node t' is n - 2. thus 
by Lemma 5 we have As{v) = l/(n - 1). It follows that the 
secure max-Ilow ol the complete acyclic directed graph equals 
the capacitv of the graph. 

By contradiction, let the minimum number of required 
symbols for secured transmission be m, < n — 2. There 
exists m intermediate node v such that order(r) = n — 1, 
and consequently, As(v) = 0. Then the minimum number of 
required symbols for secure transmission is m., = n - 1. 

■ 
It follows that the way to secure this class of complete 

graphs is to transmit at the max-flow min-cut capacity, if 
necessarv bv adding "dummy" symbols. 

V. CONCLUSIONS 

Intrigued bv the security potential inherent to random linear 
network coding, we developed a specific algebraic security 
criterion, for which we proved a set of key properties. Perhaps 
one ol the most striking conclusions of our analysis is that 
algebraic security with network coding is very dependent on 
the topology Of the network. As an example, we focused on 
complete acyclic directed graphs, and determined the secure 
max-flow. as well as the minimum number of symbols required 
lor algebraic security. As part o\' our ongoing work, vu 
extending this analysis to other more general network models. 
Ultimately, we would like to develop secure communication 
protocols capable of exploiting random linear network coding 
as an almost free cypher. 
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Proof of Lemma 2 

Contrary to the sum. ihe product of independent and 
uniformly distributed values in ¥,f is not independent and 
uniformly distributed. In fact, there are two ways to obtain 
a zero in a multiplication in F^: (1) by multiplication between 
an element a € ¥q and 0. and (2) by multiplication over two 
elements a € F«, and 6 € ¥q, such that a / 0 and b ^ 0, but 
ab = 0. Now. the total number of entries of the multiplicative 
table between q elements of Fq is q'2. and there are at mo- 
instances of the first case: q instances of ab = 0. a = 0 and 
6^0. and q instances of ab = 0. a = 0 and 6 ^ 0. As for 
the second case, it is possible to prove by contradiction that 
the number o\ zeros obtained this way is strictly less than a2: 
il this was not the CMS, all products of elements of ¥q would 
be zero, and that is absurd. Since this is true for any q. the 
number of zeros grows 0(h(q)) < 0{q2). Thus, we have 

-m^fr + Mf) FiXlin = 0) <  -5  

Since lor large enough q we have (2 + h(q))/q < 1, it follows 
that 

P(Xlin = 0),_oo - 0. 

APPENDIX 

Proof of Lemma I 

We will prove this constructively in terms of the ranks of 
pans of the iranster matrix. The auxiliary encoding vector in 
each intermediate node v is given by 

,, = (A(I-F)-l)r,(vh 

where iWf. (|l) denote! the columns ol the mainx correspond- 
ing to the incoming edges of r. The dimension of kt[ ,(ll) is 
K x <$/(», with 61 (v) < \E\. 

To determine the rank of the partial transfer matrix, we note 
that the transfer matrix \t = A(I - F)~ ' li' for the network 
must be invertible, and hence. rank(.U) = K. On the other 
hand, to determine the rank of .4(7 - F)"1 we use the fact 
that (/ - F)~l is mvertible and thus rank((/ - F)"1) = \E\. 
We also have 

nmk(A(I - F)-1) < \El 

because the dimension of A(I - F)_1) >s A' x |E|. But, since 

rwk(A(l - F)~XBT) = K = min(rank(.4(7 - F)"1). B) 

holds and K < \E\ (true because A' must be less than the 
minimum cut in the network) we conclude that 

rank(/4(7 -F)~l) = K. 

We now consider As(v) at some vertex v. For that, we can 
consider two distinct cases: the first one is if K < Sj{v). In 
this case, we cannot assume anything about A>-(r). since the 
rank of the mairi\ A/,'.^^ will be dependent on the topology 
o\ the network. As for the second case, rank(A/,'/(i)) < K => 
As(v) < 0. ■ 

Proof of Lemma 3 

Each position of a line of the transfer matrix M is a linear 
combination of independently and uniformly chosen values in 
Fq, and thus, the probahilnv of obtaining I zero in a position 
is given hy Lemma 2. The result follows by considering all the 
combinations of the possible positions in which the Y zeros 
may occur, ■ 
Proof of Lemma 4 

Suppose that a given intermediate node receives R = K+Q 
symbols. 6 > 0. It is clear that the maximum possible rank is 
/\ and thus there is a way to remove 0 columns s.t. the rank 
Of the resulting set will still be at maximum h. Now consider 
the case in which vertex v receives at most K symbols. If the 
columns are linearly dependent, the condition 

I'/uD,, 4rXh2ch3 4- ...■¥xhnchn = (0...0)T}, 

such that xhi,xh.J,....Xfl, not all <l. G   F(/ and h{.h2 hn 

represent the columns e 1/1'). will be satisfied. Since the 
linear combination of lines of the transfer matrix is again a 
linear combination of independent and uniformly distributed 
values in Fq, it follows from Lemma 3 that the probability ol 
obtaining (0...0)T tends to 0 when q —► 00 and h 
and thus, the columns /ij./iu //.n   6  T/f» are linearly 
independent w.h.p. ■ 
Proof of Lemma 5 

It follows from Lemma 4 that w.h.p.. the number of symbols 
received by a vertex is the rank of the partial transfer matrix 
received (and at most /\ > and thus 

K - mm(KtSt(v)) 
AsO) =- 

K - min(7\\order(>;) - I) 
K 
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\hstract—The problem of error control in random network 
coding iv considered, and a formulation of the problem is yflfW 
in terms of rank-metric codes. I his formulation allows many of 
the tools tlcvclorM'<l for rank-mett it milts to be applie<l to random 
network coding. A random network code induces a generalized 
decoding problem for rank-metrit codes in which the channel 
m;i> suppiy partial information about the error in the form of 
erasures (knowledge of an error location not its values) und 
deviations (knowledge of an error value but not its  location) 

I. INTRODUCTION 

While random network coding 111 is an effective technique 
for information dissemination in communication networks, 
it is highly susceptible to errors. The insertion of c\en ;i 
single corrupt packet has the potential, w hen linearly combined 
with Legitimate packets, to afiect all packets gathered by an 
information receiver. The problem of error control in random 
network coding is therefore of great interest. 

In this paper, we focus on end-to-end error control coding. 
Internal network nodes are assumed to be unaware of the pres- 
ence of an outer code, they simply create outgoing packets as 
random linear combinations of incoming packets in the usual 
manner of random network coding Unlike some approaches 
to error control in network coding (e.g., [21, [3[) we assume 
that the source and destination nodes have no knowlcge—or 
at least make no effort to exploit knowledge—of the topology 
of the network or of the particular network code used in the 
network. 

Two previous "noncoherent" or "channel-blind" approaches 
to data transmission in coded networks are closely related to 
tlie work of this paper. Jaggi et al. (4| provide polynomial* 
time rate-optimal network codes that combat By/antinc adver- 
saries Their approach is based on probabilistic assumptions 
thai require both the field si/e and the packet length to be 
sufficiently large. In contrast. Koetter and Kschischang |5J 
take a more combinatorial approach to the problem. Their key 
observation is that a random coded network may be regarded 
as a noncolicrent multiplc-mput multiple-output system (over 
a finite field). In this context, an appropriate encoding of 
information is the choice by the transmitter of a suitable vector 
space \ . rather than a vector as in classical coding thcon The 
choice of the space V is signalled by insertion into the network 

1-4244-1200-V07S25.00 ©2007 IEEE. 

of a basis for \ . where each basis vector corresponds to a 
transmitted packet As \ is closed under linear combinations 
of vectors, random network coding will (in the absence of 
noise) preserve the space, even as it mixes the transmitted 
vectors themselves. A receiver collects packets, which arc 
assumed to form a basis for a received space U. Correct 
reception is possible provided thai 1 lad I intersection 
in ;i space of sufficiently large dimension By defining an 
appropriate metric on subspaccs. a generalization of classical 
coding theory in the Hamming metric becomes possible. This 
approach works for am gi\cn field and imposes virtually no 
constraints on packet B2C 

This paper is motivated b> the results of |5| and addresses 
the construction of practical codes. Our main contribution 
is to show that, for a large class of codes, the subspace 
distance metric of |5| and the rank metric (eg. [6|. (7|) 
are strongly related, allowing mam of the tools from the 
theory of rank-metnc codes to be naturally applied to random 
network coding. We note, however, tliat our approach is not 

i straightforward application of rank-metric codes. Under 
random network coding, two phenomena can occur, called 
here erasures and deviations, that depart from the conventional 
notion of rank errors. Erasures and deviations are dual to each 
other and correspond to partial information about the error 
matrix, akin to the role played by symbol erasures in the 
Hamming metric. In our context, an erasure corresponds to 
I he knowledge of an error location but not its value, while a 
deviation correspond to the knowledge of an error value but 
not its location. These concepts generalize similar concepts 
found in the rank-metric literature under the terminology of 
"row and column erasures" |8]-[10]. In related work [11], we 
provide an efficient decoding algorithm for Gabidulin codes 
|7| that takes into account erasures and deviations However, 
space limitations make it impossible to describe tliese results 
here. 

The remainder of this paper is organized as follows In 
Section II. we provide a brief description of the rank metric 
and its properties. In Section 111. we provide a formulation 
of the problem of error control in random network coding. 
Finally, in Section IV. we demonstrate the strong connection 
between certain decoding problems in the rank meine and the 
subspace decoding approach of [5]. Proofs have been omitted 
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throughout: however, see |11|. It is well-known that, for any A. Y 6 FJXTM. we have 

II. PRKLIMINARII s 

Let q > 2 be a power of a pnine. In this paper, all 
vectors and matrices are defined over the finite field F(/, unless 
otherwise mentioned. We denote I ;is the set of all /; x m 
mainces over F,v and we set FJ = FJxl. Tims, v G FJ is a 
column vector, whereas 0 € F^*"1 is a row vector. 

If r is a vector, then the symbol r, denotes the /th entry of r, 
For matrices, the notation varies according to how the matrix 
is defined: A] U could be cither the rows of a matrix 

plil 
A —      :      or the columns of | matrix A = [J4I,.. 

Tlie distinction will always be clear from context In either 
case, the symbol A., always refers to the entry in the >lh row 
and jlh column of A. 

The k x ft idcnim matnx is denoted by /,,. <k. If / = Ikxk, 
tlien the notation /, refers to the Mh column of /. 

We will make extensive use of the column vector variables 
Lx. L> € PJ and the row vector vanables \\.\> € 
F^xm. For these \anables onlv. we introduce the notations 

[K 
L\ -- |L.,....L,|aod V; -- 

L\Vl can be expanded as 
Vt 

Note that the product 

w-Ew* (i) 
*=* 

If 5C {1 k) and Ae FJX\ then ,45 - [A., 1 e S] 
will refer to the matrix consisting of the columns of \ that 
are indexed bv 5, placed in natural (increasing) order 

Let /      /„.... U Z \\ „\ and//       {1 n 
The matrices /// and lu w ill be extensively used in Section IV 
to simplify notation For am 1 •. F ' (respectivcly. A e 
Fjxn). the matrix /' A (resp .   !/•,) extracts the rows (resp. 

\l4\xk columns) of A indexed by U. Conversely, for any B € F, 
(resp.. B € Fjx U ) the matnx luB (resp.. Btf() reallocates 
the rows (resp. columns) of B to the positions indexed by 
U. where all-zero rows (resp.. columns) arc inserted at 1 Ik- 
positions indexed by W Finally, observe that lu and lm 
satisfy the following properties 

/ = /*//,   h &, <a 
l-Ju       I U\x\U\ ß) 

l^lu=0. (4) 

Let A E ¥]jxn\ We use <A) and rank A' to denote, 
respectively, the row space and tlie rank of X. By definition, 
rank A' = dim (A') An equivalent definition of rank is the 
following: 

rank X =    min    r. 

X-L\V{ 

(5) 

rank(A + V) < rank A   | rank Y 

Proposition 1: For any A 6 FJxm and V € Fjxm, 

.6) 

rank rank X f rank Y - dim (A) n (Y)       (7) 

= rankA' +    min    rank (Y - AX).       (8) 

Proposition 2: For any A e FJXTn, Y € Fjxm and r < k. 

mm    rank l >' -AX) - rank 
I H- rank Air,  A.) 

(9) 

where e*{X, Y) = max{r -n f rank A - rank V. 0}. 
A matrix code C is defined as any subset of FJxm. A 

matrix code is also commonly known as an array code when 
it forms a linear space over F(/ 112] It follows from (6) that 
the following distance function is a metric |7]: 

Definition I Tlie rank distance between matrices a,b £ 
F£xrn is defined as dR(a,b) = rank(6-a). 

A rank-metric code is any matnx code used in tlie context 
of the rank distance metric. The minimum distance of a rank 
metnc code is the minimum rank distance of tlie code among 
all pairs of codewords. 

Consider a rank-mctnc code C C FJxm and let c be a 
codeword in (' Suppose an error matrix e € FJxr" is added 
to c and the matnx r = c | e is received. The standard rank 
decoding problem is to find a codeword c eC that nünimi/cs 
the rank distance between r and c. tliat is. 

c - argminrank(r - c). (10) 

Now. if the error matrix e - r - c has rank r, we can use 
(5) and (1) to write 

* = W = £MS (in 
1=1 

where tlie vectors L\% — LT and \ IV are as defined 
above 

Vectors V, and /.; can be thought of as giving tlie value and 
the location, respectively, of the yth error component. Namely, 
the error value V j appears (multiplied by the coefficicn 
in every row i of c for which LtJ is nonzero. 

Note that if //? = 1 and Lj is a unit vector (that is. a 
zero/one vector with a single one) for all ./. then this rank- 
metric desenption of the error naturally reduces to tliat of 
the Hamming metnc. Thus, rank decoding can be seen as 
a generalization of minimum Hamming distance decoding 
Unlike the classical case, however, the description of the error 
matnx in tenns of general Lj and I'; is not unique Namek. 
if e = L\V{, then we also have e = {L\T){T~XV{) for any 
nonsingular matnx T € FJxr. 
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III. ERROR CORRI CTION IN RANDOM NETWORK CODING 

We consider a point-to-point communication network with 
a single source node and single destination node The source 
node selects a message w from a set W and encodes this mes- 
sage into // packets A', A\. € f}*, which are regarded 
as the incoming packets to the source node. Each node in ihe 
network, including the source, performs standard distributed 
network coding |l| w lie never a node lias a transmission 
opportunity, it produces an outgoing packet as a random 
1 -linear combination of all the incoming packets it lias 
until then receded  The destination node collects A packets 
Y'I V'/v € Fj' and decodes these packets into a estimate 
w e W of the original message. The decoding is successful 
whenever w     n 

Let A be an n x M matrix whose rows arc the transmitted 
packets V \, and similarly, let V be an V « M matrix 
whose rows are the received packets )\. . V\ Since all 
packet operations arc linear over ¥r then, regardless of the 
network topology the transmitted and received packets can be 
related by the following expression: 

Y = AX, (12) 

where A is an Ar x i> matrix corresponding to the overall linear 
transformation applied by the network (note that any linear 
packet operations performed at the source node are considered 
part of the network). 

Before proceeding, we note that this model encompasses a 
variety of situations: 

• The network ina> ha\c cycles or delays. Since the overall 
system is linear, expression (12) will be true regardless 
of the network topol 

• The network could be wireless instead of wired In this 
case, we simply constrain each intermediate node to send 

.sly the same packet in each of its outgoing links. 
• Tlie source node may want to transmit more tlian one 

message In this case, we assume that each packet carries 
an index of the message to which it corresponds and 
that packets with different message indices are processed 
separately throughout the network [13]. 

• The network topology may exhibit tune-vananee as nodes 
join and leave and connections arc established and lost. In 
this case, the model can still be preserved by considering 
each link to be the instantiation of a successful packet 
transmission. 

• The network ma> operate in multicast mode. i.e.. there 
nia> be more than one destination node Again, ex- 
pression (12) still applies, where the matrix .1 may be 
diITercnt for each destination. 

Let us now extend this model to incorporate packet errors 
Suppose that at the input of each link, a corrupting packet 
mas be added to the packet being transmitted at that link. Let 
Zi € Wff denote the corrupting packet applied at the input of 
link where we assume that the links are indexed from 1 to 
L  By linearity of the network, we can write 

where Z is an /. x M matrix whose rows are Z\ . Z^. and 
B is an iV x L matrix corresponding to the overall linear 
transformation incurred by the corrupting packets until the 
destination. 

Observe tlial this model can represent not only the occur- 
rence of random link errors but also the action of malicious 
nodes, in the following way We assume tliat each node, 
malicious or not. creates a prescribed outgoing packet as a 
random linear combination of incoming packets, as described 
above A non-malicious node then simply transmits this pre- 
scribed packet as its outgoing packet A malicious node may 
either operate as a non-malicious node or may replace Uns 
prescribed packet by one of the follow ing: an arbitrary linear 
combination of the incoming packets or an arbitrary packet 
which may not be I linear combination of the incoming 
packets. Refusing to transmit a packet corresponds to sending 
the trivial linear combination, i.e.. an all-zero packet. Note 
that all these operations can be represented in the model as 
the addition of a corrupting packet to the prescribed outgoing 
packet, thus (13) holds. The number of non/cro rows of Z 
gives exactly the number of "packet interventions" performed 
In a malicious node and thus give a sense of the "power" 
employed by this node towards jamming tlie network. 

Let Enc: W i be tlie encoding function applied 
by the source node. Consider tlie decoding operation at the 
destination node. Performing maximum-likelihood decoding 
of the message w given tlie received matrix V would require 
knowledge of tlie statistics of .1. B and Z. which may not be 
available or may be too hard to find. A more modest goal may 
be to find a message that minimizes tlie number of corrupting 
packets introduced in the network, owing to the assumption 
that adversarial power is somehow limited or costK 

If 1 and B are known to the destination node, then we 
may define the network decoding problem as the problem of 
finding 

wt(Z) (14) w = argmin 
u/ew 

mm 

\     Enc(u>) 

where wt(zT) denotes the number of nonzero rows of Z. A 
typical situation where this problem arises is when both the 
network code and the network topology arc deterministic and 
known to the destination node |2J. [3] 

Here, we arc interested in encoding and decoding functions 
that operate under no assumptions on tlie matrices A and 
B (except possibly some constraint on the rank of A). Any 
valid explanation of tlie received Y in terms of A". A, B 
and Z is conceivable, and the decoder attempts to find one 
that minimizes wt(Z). Thus, we define the random mtwotk 
decoding problem as the problem of finding 

w = argmin       nun 
U,6W AM.Z: 

Y=AX+BZ 

m* . \ • • 

wt(Z) (15) 

Y = AX + BZ (13)    where r < Ar is some lower bound on the rank of .4. 

Authorized licensed use limited to: MIT Libraries Downloaded on February 26. 2009 at 22:03 from IEEE Xptore   Restrictions apply 



The ability to range over all possible A and li actual 1\ 
facilitates the problem, since we can now find the \alue of the 
inner minimization in (15). 

Theorem 3: Let A' € FJxM. Y € F^xM. Z € F 
A e Ff*n and B e F*w. where n, V. M and L > N 
are positive integers  1 et U' be a finite set and Enc: W —\ 
jpnxA/   jfrQ random network decoding problem (15) can be 
reformulated as 

w = arginin rank -rank A' f <^(X,Y)\ 

06) 
where cr(X, Y) = m$x{r - n i rank A' - rank Y. 0}. 

From Theorem 3, we observe that performing any elemen- 
tary row operations in A or >' does not change the decoding 
problem. Thus, from the point of view of the decoder, what is 
transmitted is not the actual matrix A', but onl> the row space 
of A Likewise, it is the row space of V what is effectiveh 
received by the destination node. This observation provides 
a close connection between the random network decoding 
problem proposed in this paper and the coding theory for 
subspaces introduced in [3] 

Observe also dial, if rank A is a constant for all valid A. 
then the tenn A . V does not depend on the transmitted 
message and can be omitted from the mmuni/aiion. 

From now on we can assume that rank Y X. since only a 
basis for (V) needs to be considered as the received matrix In 
practice, this means tliai am linear dependent received packet 
may be safely discarded by the destination node. 

The approach we propose is this paper is characterized b> 
choosing the message set as I rank-metric code W - C C 

I and setting Enc(x) ■ [/    x| for all x e C, where wc 
assume M 

Note that, in the error-free case, wc mav chose C - FJxm 

and obtain cxactlv the standard random network coding ap- 
proach 111. 113|. Tlie vectors X\ r„ mav be interpreted as 
data packets, and each of tlie transmitted packets X \.        \ 
is formed by appending a header at the beginning of the 
corresponding data packet, so that A' = (/    x]. The received 
matrix will then be given by Y       A    AM], from which x 
can be recovered if A has rank n 

Pmp<jsmon 4 Let W C C |* •"' and Enc(x) - [/" x| 
for all x € C. If Y = \A y], then the random network 
decoding problem (16) becomes the problem of finding 

x = argmin rank (3/ - Äx). 
a>€C 

(17) 

Note tliat if A is square and invcrtiblc. then rank(y-.4x) = 
ranki.l !y - x) = rankfr - x). where r A ly In this 
case, we obtain the conventional rank decoding problem of 
finding a codeword x € C that is closest in rank distance to 
r Thus, at least in this case, it is clear that tlie rank distance 
is the right" metric for tlus problem, and ihat we should use 
a rank-metnc code with large minimum rank distance 

In the case wliere \ is not mvcrtible. a general approach 
could be to define a new code C = AC = {Ax, x € C) and 
find a codeword x' e C that lias the smallest rank distance 

to r. Then, any pre-image of x' in (' w ill be a solution to the 
random network decoding problem. This approacli liowcvcr. 
has the inconvenience that a new code would have to be 
used at each decoding instance, w hielt mav lead to decoding 
inefficiency (an efficient decoder for the code C may not even 
be known) Instead, wc would like to find a decoding problem 
wheie the structure of C could still be exploited. This is the 
subject of the next section 

iv. A Gi \i K \i i/i i) RANK DECODING PROBLEM 

In this section we explore tlie case when .1 is not square 
and i avertible. 

Define fi and 6 such that rank  1 - n - n and N = n — p + 
K\ &  Choose an Y x V nonsingular matrix /        I'M. where 

T\ and  /    hive n - /< and I rows, respectivelv, such that 
rank 1\A -   n - j.i and 7.-1      0. Such I matrix I* can be 
found by performing Gaussian elimination on A. Note that, 
since rank TY     A'. we must liave rank I y = 6. 

We can now rew nte our objective function as 

rank(y-.-tx)      rank7"(y-^4x)     rank 
\Tly-T1Ax] 

V 
(18) 

where 9    T2y. 
Let us first examine the case wliere //     0. i.e.. rank A = n. 

We can choose 7': such tliat T\ \     I and obtain 

rank 
Tiy- 

V 
rank 

r - x 
V (19) 

where r = T\y. 
From (8), we obtain 

rank 
r — x 

= <5 + min   rank(r -x - LV). (20) 

Thus, we obtain a problem very similar to mmiini/ing the 
rank distance between r and x. except for tlie presence of 
the tenn LY Roughly speaking, this means tliat any rank 
difference that could be "explained away bv \ is not counted 
in the rank distance. 

Let ns now proceed to the general case Similarly as above. 
we would like to choose Fj in such a way lliai the resulting 
decoding problem is as close as possible to the standard 
decoding problem in C. Since, for p <>. ue cannot make 
/ \ ft we w ill choose T{ so that / \ is as close as possible 
to an identity matrix. LclW be tlie set of indices of some n-fi 
linear independent columns of .1. and let /V     {l n}\Uc. 
We choose T\ such that tlie columns of /1 A indexed bv // 
fonn an identity submatnx. i.e /(n_/i)x(n_/i). The 
remaining columns of /j. 1 are given in I, \l:4. We record this 
information in the matrix 

L = Iu - I' i   tiu (21) 

which possess tlie property   l/tL Itl.tl  (in particular, 
rank t      //)  Using properties of tlie matrices In and &•, 
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it is eas>  to verify by direct substitution that I\A can be 
recovered from L as 

/    I      ÜM-UZ). (22) 
Define r      Tu      .</  BO that 7jer - Txy and Igr     0. It 

follows thai /;    / - /./,'  r     7 y  We can now rewrite (IX) 

rank 
/    i.r p" rank 

= rank 

-tJ$){r-m) 
V 

U-LlDir-x) 
V 

(24) 

where llie last cqualih follows from if^l - Llfi) = 0. 
We liavc obtained an expression that is very similar to a rank 

distance between r and x. The precise relationship between 
(24) and the rank of r - x will be established in the following 
definition and the subsequent lemma 

Definition :■ Let e G FJxm. I € FJ*" and \ g F*xm. 
The rank of e given I and \ . denoted by rank(e|/.. r)f is 
defined as 

nnk(e\LV)± mm 
r./.;.\,' 

i ■ ( vrY=v 

r. (25) 

If (r, LjjVf) is a solution to the above problem, then the 
decomposition e = L \ w ill be called a ra«A- decomposition 
of e consistent with L ami \ 

lemma 5: Let U C {1 »}, £ € FJX" and V> € F*xm 

be such that \U\ //. (fit /,. .„ and rank V f. Then, 
for any e€ FJxm, 

rank = -p+rar\k(e\LV).       (26) 

From Lemma 5. we see tliat the random network decoding 
problem (17) can be restated as 

x - argminrank(r - x\L,V). 
as€C 

(27) 

If the error matrix e = r - x can be rank-decomposed 
into e Lr\\\T consistenth with A and 1 . then we will say 
that p erasures, 6 deviations and <•. - r - p- 6 errors ha\ e 
occurred   The components I   \     /       1 p. correspond 
to llie erasures, the components LjVj, j  = p -f 1 ,6, 
correspond to the deviations, while the remaining components 

/ = p + S + 1, — r, correspond to the (unknown) 
errors. 

Proposition 6: A rank-metric code C C ttxm of minimum 
rank distance d is able to correct an> pattern of i errors. ;/ 
erasures and 6 deviations if and only if 2< I p. I 6 < d - 1. 

We sununarize the results of this section in the following 
theorem, which is the main theorem of this paper. 

Theorem 7: Let C C FJxm be a code of minimum rank 
distance d, and let .4 e wfxn and y e F^xm be such that 

rank [/I    y\ = N. (28) 

Set /<      " - rank A and 6 - N - (n - p). For any 7'i e 
I        xV. Tn€WA*s andZYC {1 „} such that 

TxAlu 0 - *(n-j»)x(n~M) (29) 

T2A = Q (30) 

nk 
T2 

= N (Jl) 

define r fo.Ti*. I = (/ - yVT,^)/^ and V = T2y. 
Then a solution to the random network decoding problem (17) 
is L'i\en by 

x = argininrank(r - x\L, V). (32) 

This solution is guaranteed to be unique if 
rank(r-i|L,V) < {d-\ • // | 5)/2. 

The problem (32) given in Theorem 7 will be called rank 
decoding with errors, erasures and deviations, or simply rank 
decoding. Note tliat it reduces to the standard rank decoding 
problem (10) when p = S = 0. 

Finally we note that certain rank decoding problems with 
Tow and column erasures ha\e been previously proposed 
m the literature IX|-|H)|  and correspond, respectively, to the 
cases where \]>- \ V?M arc UIUt rou sectors and where 
L\, LM are unit column vectors Thus, the rank decoding 
problem we propose is a strict generalization of llie pre\ ions 
ones. 
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Network error correction coding provides information theoretic security 
against arbitrary non-ergodic errors in a network. As one part of this project 
we investigated network error corred ion lor multiple-source multicast as well 
as non-multicast, generalizing previous results in the literature on single- 
source multicast. 

For multiple-source multicast, we considered the coherent case where the 
network topology is known, as well as the noncoherent case where random 
linear coding is done over an unknown network topology. For both cases, we 
obtained the capacity region of reliable transmission rates under arbitrary 
errors on up to z links in the network, as 

y^ Ti < rns - 2z V subsets of sources S 
ies 

where r, denotes the rate of source z, and mg denotes the minimum cut 
capacity between the subset of sources S and any sink. For noncoherent 
coding, the region is asymptotically achievable with high probability over 
the random network code, as packet length grows. Unlike the single-source 
case where network coding distance arguments suffice to show achievabil- 
ity of the capacity, in the multiple-source case we additionally rely on the 
generic nature of the random network code in linearly combining packets 
from different sources. 

For non-mult icasl. finding the capacity region of a general network even 
in the error-free case is an open problem. Thus, we considered the prob- 
lem of constructing a network error correction code from a given error-free 
network code.    Given any linear network code that achieves rate vector 
(r\. r-2 /„), where r* is the transmission rate from source i = 1 n 
to its set of sink nodes %, we can obtain a network code that achieves rate 
vector (r\ - 2z. ro -2z rn - 2z) under arbitrary errors on up to t links 
in the network. 

Another problem investigated in ihis project considered network error 
and erasure correction coding under non-worst-case models of error and era- 
sure local ions, in contrast to existing worst-case models which only consider 
the number of errors and erasures. In the latter case, it is well-known that 
optimal worst-case performance is achievable with random linear coding at 
every node. On the other hand, for randomly located errors and erasures 
we showed that the relative benefit of codin.» versus routing in the network 
depends on the relative occurrence of errors and erasures and the network 
topology, through theoretical analysis of a family of simple network sub- 
graphs consisting of multiple multi-hop paths, and simulation experiments 
on randomly generated hypergraphs. We also analyzed the relative benefit 

1 



of designing network codes for in-network decoding versus decoding at tin- 
sink, which depends on the network topology. 

We also showed how back pressure routing/coding algorithms could be 
extended to various classes of network cod«*, including pairwiso wireline 
network coding and one-hop wireless coding. Back PrOflgUTO approaches 
make routing and coding decisions based on local queue length informa- 
tion, which provides robustness to networks that are changing ergodically 
or adversarially. We showed how to define virtual queues appropriately so 
as to efficiently optimize over different classes of network codes. 




